15-60 Pavel Exner and Sylwia Kondej
Gap asymptotics in a weakly bent leaky quantum wire (219K, pdf) Jun 24, 15
Abstract , Paper (src), View paper (auto. generated pdf), Index of related papers

Abstract. The main question studied in this paper concerns the weak-coupling behavior of the geometrically induced bound states of singular Schr\"odinger operators with an attractive $\delta$ interaction supported by a planar, asymptotically straight curve $\Gamma$. We demonstrate that if $\Gamma$ is only slightly bent or weakly deformed, then there is a single eigenvalue and the gap between it and the continuum threshold is in the leading order proportional to the fourth power of the bending angle, or the deformation parameter. For comparison, we analyze the behavior of a general geometrical induced eigenvalue in the situation when one of the curve asymptotes is wiggled.

Files: 15-60.src( 15-60.comments , 15-60.keywords , weakarc150624.pdf.mm )