- 17-14 Konstantin Khanin, Sasa Kocic
- On the smoothness of the conjugacy for circle maps with a break
(524K, PDF)
Feb 1, 17
-
Abstract ,
Paper (src),
View paper
(auto. generated pdf),
Index
of related papers
-
Abstract. For any $lpha\in(0,1)$, $c\in\Rr_+ackslash\{1\}$ and $\gamma>0$, and Lebesgue almost all irrational $
ho\in(0,1)$, any two $C^{2+lpha}$-smooth circle diffeomorphisms with a break, with the same rotation number $
ho$ and the same size of the breaks $c$, are conjugate to each other, via a $C^1$-smooth conjugacy whose derivative is uniformly continuous with modulus of continuity $\omega(x)=A|\log x|^{-\gamma}$, for some $A>0$.
- Files:
17-14.src(
17-14.keywords ,
khanin-kocic-modulus-of-continuity.pdf.mm )