- 94-75 Gesztesy F., Holden H., Simon B., Zhao Z.
- A Trace Formula for Multidimensional Schrodinger Operators
(37K, AMSTeX)
Mar 30, 94
-
Abstract ,
Paper (src),
View paper
(auto. generated ps),
Index
of related papers
-
Abstract. We prove multidimensional analogs of the trace formula
obtained previously for one-dimensional Schr\"odinger operators. For
example, let $V$ be a continuous function on $[0, 1]^{\nu}\subset\Bbb
R^{\nu}$. For $A\subset\{1,\dots ,\nu\}$, let $-\Delta_{A}$ be the
Laplace operator on $[0, 1]^{\nu}$ with mixed Dirichlet-Neumann
boundary conditions
$$\alignat2
\varphi(x) &=0, &&\qquad x_{j}=0 \text{ or } x_{j}=1 \quad\text{for }
j\in A, \\
\frac{\partial\varphi}{\partial x_{j}}(x) &= 0, &&\qquad x_{j}=0
\text{ or } x_{j}=1 \quad\text{for } j\notin A.
\endalignat
$$
Let $|A|=$ number of points in $A$. Then we'll prove that
$$
\text{Tr}\biggl(\sum_{A\subset\{1,\dots ,\nu\}} (-1)^{|A|} e^{-t(-
\Delta_{A}+V)}\biggr)=1-t\langle V\rangle +o(t) \quad\text{as }t\downarrow 0
$$
with $\langle V\rangle$ the average of $V$ at the $2^{\nu}$ corners of
$[0, 1]^{\nu}$.
- Files:
94-75.tex