- 96-137 Chierchia L.
- Non-degenerate "Arnold diffusion"
(114K, LaTeX)
Apr 18, 96
-
Abstract ,
Paper (src),
View paper
(auto. generated ps),
Index
of related papers
-
Abstract. The Hamiltonian $H\=\su{2} |I|^2 + \e V(\f;\e)$ with
$V\=\cos \f_4 + \e^8 \sum_{j=1}^3 \cos(\f_j+\f_4)$ and $I\in\real^4$,
is shown to exhibit ``Arnold diffusion" (or, more precisely, ``Arnold
instability") on each energy surface, providing the
first example of ``Arnold diffusion" for one--parameter perturbations of
non--degenerate (``steep"), completely integrable Hamiltonian systems.
- Files:
96-137.tex