- 97-169 Damanik D.
- Continuity properties of one-dimensional quasicrystals
(23K, LaTeX)
Apr 3, 97
-
Abstract ,
Paper (src),
View paper
(auto. generated ps),
Index
of related papers
-
Abstract. We apply the Jitomirskaya-Last extension of the Gilbert-Pearson theory
to discrete one-dimensional Schr\"odinger operators with potentials
arising from generalized Fibonacci sequences. We prove for certain rotation
numbers that for every value of the coupling constant, there exists an
$\alpha > 0$ such that the corresponding operator has purely
$\alpha$-continuous spectrum. This result follows from uniform upper
and lower bounds for the $\| \cdot \|_L$-norm of the solutions
corresponding to energies from
the spectrum of the operator.
- Files:
97-169.tex