- 97-428 Boutet de Monvel A., Georgescu V., Sahbani J.
- Higher Order Estimates in the Conjugate Operator Theory
(251K, LaTex 2e)
Aug 4, 97
-
Abstract ,
Paper (src),
View paper
(auto. generated ps),
Index
of related papers
-
Abstract. Let $H$ be a self-adjoint operator which admits a locally
conjugate operator $A$. Set $R(z)=(H-z)^{-1}$, let
$\Pi_{\pm}$ be the spectral projection of $A$ associated to
the interval $\pm \lbrack 0,\infty )$ and let
$\C{H}_{s,p}$ ($s\in \D{R}, 1\leq p\leq \infty $) be the
Besov scale associated to the operator
$A$. We study the regularity properties of the maps
$\lambda \mapsto R(\lambda \pm i0)$,
$\lambda \mapsto \Pi_{\mp}R(\lambda \pm i0)$ and
$\lambda \mapsto \Pi_{\mp}R(\lambda \pm i0)\Pi_{\pm}$ when
considered with values in a space of the form
$B(\C{H}_{s,p};\C{H}_{t,q})$. Our results imply optimal
local decay and propagation properties of $H$ with respect to
$A$, in particular estimates of the form $\Vert
\langle A\rangle^t\Pi_{\mp}\exp (\mp i\tau H)\langle
A\rangle^{-s}\Vert\leq c\tau^{-\alpha }$ for $\tau \geq 1$.
- Files:
97-428.tex