97-564 Ruskai, M.B. Werner, E.
A Pair of Optimal Inequalities Related to the Error Function (8K, LATeX 2e) Nov 4, 97
Abstract , Paper (src), View paper (auto. generated ps), Index of related papers

Abstract. We show that $g_{\pi}(x) \leq \sqrt{\pi} e^{x^2} [1 - \hbox{erf}(x)] < g_4(x)$ where $g_k(x) = \frac{k}{(k-1)x + \sqrt{x^2+k}}$ and that these bounds are optimal for functions of this type.

Files: 97-564.tex