Research
Here is a research statement Research Statement (from 2019).
My research focuses on the geometry, topology, and deformation theory of locally homogeneous geometric structures on manifolds, a subject with roots in Felix Klein’s 1872 Erlangen program that features a blend of differential geometry, Lie theory, representation theory, and dynamics. I study an array of lowdimensional geometric structures modeled on nonRiemannian geometries including semiRiemannian, affine, and projective geometries. Of particular interest to me is a phenomenon known as geometric transition, by which different moduli spaces of geometric manifolds interact with one another.
In 2015, JeanMarc Schlenker gave a Séminaire Bourbaki about my joint work with François Guéritaud and Fanny Kassel.
Recent papers

Convex cocompactness for Coxeter groups
joint with F. Guéritaud, F. Kassel , G.S. Lee, and L. Marquis.

Quasicircles and width of Jordan curves in CP^1
joint with Francesco Bonsante , S. Maloni, and J.M. Schlenker, Bulletin of the London Mathematical Society, https://doi.org/10.1112/blms.12438

The induced metric on the boundary of the convex hull of a quasicircle in hyprebolic and anti de Sitter geometry
joint with Francesco Bonsante , S. Maloni, and J.M. Schlenker, Geometry and Topology (to appear).

Affine actions with Hitchin linear part
joint with T. Zhang, Geometric and Functional Analysis, 29, 13691439 (2019).

Proper affine actions of rightangled Coxeter groups
joint with F. Guéritaud and F. Kassel, Duke Mathematical Journal, 169(12): 22312280 (2020).

Convex cocompact actions in real projective geometry
joint with F. Guéritaud and F. Kassel.

Convex cocompactness in pseudoRiemannian symmetric spaces
joint with F. Guéritaud and F. Kassel, Geometriae Dedicata, special issue Geometries: A celebration of Bill Goldman's 60th birthday., 192, Issue 1, pp. 87126, 2018.

Convex projective structures on nonhyperbolic threemanifolds
joint with S. Ballas and G.S. Lee, Geometry and Topology, 22 (2018), pp 15931646.

Fundamental domains for free groups acting on antide Sitter 3space
joint with F. Guéritaud and F. Kassel, Math. Res. Lett. 23 (2016), no. 3, pp. 735770.

Polyhedra inscribed in a quadric
joint with S. Maloni and J.M. Schlenker, Invent. Math., 221 (2020), 237300.

Limits of geometries
joint with D. Cooper and A. Wienhard, Trans. Amer. Math. Soc., 370 (2018), 65856627.

Margulis spacetimes via the arc complex
joint with F. Guéritaud and F. Kassel, Invent. Math., 204 (2016), no. 1, pp. 133193.

Geometry and topology of complete Lorentz spacetimes of constant curvature
joint with F. Guéritaud and F. Kassel, Ann. Sci. Éc. Norm. Supér. 49 (2016), no. 1, pp/ 156.

Ideal triangulations and geometric transitions
J. Topol. 7 (2014), no. 4, pp. 11181154. 
A Geometric transition from hyperbolic to anti de Sitter geometry
Geom. Topol. 17 (2013), no. 5, pp. 30773134
The following works are in preparation. Preliminary drafts may be available upon request.

Margulis spacetimes with parabolic elements
joint with F. Guéritaud and F. Kassel
(in preparation) 
Examples and counterexamples of convex cocompact groups
joint with F. Guéritaud and F. Kassel
(in preparation) 
Exotic real projective Dehn surgery space
joint with S. Ballas, G.S. Lee, and L. Marquis. (in preparation)
Thesis
Geometric transitions: from hyperbolic to AdS geometry
ph.d. thesis, Stanford University (2011).