Research

Here is a research statement Research Statement (from 2019).

My research focuses on the geometry, topology, and deformation theory of locally homogeneous geometric structures on manifolds, a subject with roots in Felix Klein’s 1872 Erlangen program that features a blend of differential geometry, Lie theory, representation theory, and dynamics. I study an array of low-dimensional geometric structures modeled on non-Riemannian geometries including semi-Riemannian, affine, and projective geometries. Of particular interest to me is a phenomenon known as geometric transition, by which different moduli spaces of geometric manifolds interact with one another.

In 2015, Jean-Marc Schlenker gave a Séminaire Bourbaki about my joint work with François Guéritaud and Fanny Kassel.

Recent papers

  1. Quasicircles and width of Jordan curves in CP^1
    joint with Francesco Bonsante , S. Maloni, and J.-M. Schlenker
  2. The induced metric on the boundary of the convex hull of a quasicircle in hyprebolic and anti de Sitter geometry
    joint with Francesco Bonsante , S. Maloni, and J.-M. Schlenker
  3. Affine actions with Hitchin linear part
    joint with T. Zhang, Geometric and Functional Analysis, 2019, doi 10.1007/s00039-019-00511-6.
  4. Proper affine actions of right-angled Coxeter groups
    joint with F. Guéritaud and F. Kassel.
  5. Convex cocompact actions in real projective geometry
    joint with F. Guéritaud and F. Kassel.
  6. Convex cocompactness in pseudo-Riemannian symmetric spaces
    joint with F. Guéritaud and F. Kassel, Geometriae Dedicata, special issue Geometries: A celebration of Bill Goldman's 60th birthday., 192 , Issue 1, pp. 87--126, 2018.
  7. Convex projective structures on non-hyperbolic three-manifolds
    joint with S. Ballas and G.-S. Lee, Geometry and Topology, 22 (2018), pp 1593--1646.
  8. Fundamental domains for free groups acting on anti-de Sitter 3-space
    joint with F. Guéritaud and F. Kassel, Math. Res. Lett. 23 (2016), no. 3, pp. 735--770.
  9. Polyhedra inscribed in a quadric
    joint with S. Maloni and J.-M. Schlenker
  10. Limits of geometries
    joint with D. Cooper and A. Wienhard, Trans. Amer. Math. Soc., 370 (2018), 6585--6627.
  11. Margulis spacetimes via the arc complex
    joint with F. Guéritaud and F. Kassel, Invent. Math., 204 (2016), no. 1, pp. 133--193.
  12. Geometry and topology of complete Lorentz spacetimes of constant curvature
    joint with F. Guéritaud and F. Kassel, Ann. Sci. Éc. Norm. Supér. 49 (2016), no. 1, pp/ 1--56.
  13. Ideal triangulations and geometric transitions
    J. Topol. 7 (2014), no. 4, pp. 1118--1154.
  14. A Geometric transition from hyperbolic to anti de Sitter geometry
    Geom. Topol. 17 (2013), no. 5, pp. 3077--3134

The following works are in preparation. Preliminary drafts may be available upon request.

  1. Margulis spacetimes with parabolic elements
    joint with F. Guéritaud and F. Kassel
    (in preparation)
  2. Convex cocompactness for reflection groups
    joint with F. Guéritaud, F. Kassel , G.-S. Lee, and L. Marquis.
    (in preparation)
  3. Examples and counter-examples of convex cocompact groups
    joint with F. Guéritaud and F. Kassel
    (in preparation)
  4. Exotic real projective Dehn surgery space
    joint with S. Ballas, G.-S. Lee, and L. Marquis. (in preparation)

Thesis

Geometric transitions: from hyperbolic to AdS geometry
ph.d. thesis, Stanford University (2011).