M408M Learning Module Pages
Main page Chapter 10: Parametric Equations and Polar CoordinatesChapter 12: Vectors and the Geometry of SpaceChapter 13: Vector FunctionsChapter 14: Partial DerivativesChapter 15: Multiple IntegralsLearning module LM 15.1: Multiple integralsLearning module LM 15.2: Multiple integrals over rectangles:Learning module LM 15.3: Double integrals over general regions:Learning module LM 15.4: Double integrals in polar coordinates:Learning module LM 15.5a: Multiple integrals in physics:Mass, center of mass, and moment of inertiaTriple integrals in physics Learning module LM 15.5b: Integrals in probability and statistics:Learning module LM 15.10: Change of variables: |
Mass, center of mass, and moment of inertiaSuppose that we have a thin plate, so thin that it's practically 2-dimensional. Such a plate is called a planar lamina. A lamina is described by the region $D$ in the $x$-$y$ plane that it covers, and by its mass density $\rho(x,y)$, which gives the mass per unit area. In the following video, we show how to get the mass and center-of-mass of a lamina by integration. If the density were a constant, finding the total mass of the lamina would be easy: we would just multiply the density by the area. When the density isn't constant, we need to integrate instead. The mass of a little box of area $dA$ around the point $(x,y)$ is essentially $\rho(x,y) dA$. For the total mass of the lamina, we add up the boxes and take a limit to get $$M \ = \ \iint_D \rho(x,y) dA.$$ This integral can be done in rectangular coordinates, polar coordinates, or by whatever method you prefer.
The moment of inertia of an object indicates how hard it is to rotate. For a point particle, the moment of inertial is $I=mr^2$, where $m$ is the mass of the particle and $r$ is the distance from the particle to the axis of rotation. The moment of intertia of an object with many pieces is the sum of the moments of inertia of its pieces. The following video what the moment of inertia means physically, and how we can calculate it. Let's imagine that we're rotating around the origin, so $r^2=x^2+y^2$. Since the moment of inertial of a little box of size $dA$ at position $(x,y)$ is $(x^2+y^2) \rho(x,y) dA$, the moment of inertia of the entire lamina is $$ I = \iint_D (x^2+y^2) \rho(x,y) dA.$$
|