Advanced Building Blocks
Next we tackle slightly harder
functions that come up a little less often than the basic
building blocks. Either memorize the following derivatives, or know
how to derive them from the derivatives of the basic building
blocks. Either way, get to the point where it takes a minute, at
most, to figure out the derivatives of these functions.
$$
\frac{d}{dx}\bigl( a^x \bigr)=a^x\ln(a)
$$
$$
\frac{d}{dx}\bigl( \log_a(x) \bigr)=\frac{\ln(a)}{x}
$$
$$
\frac{d}{dx}\bigl( \tan(x) \bigr)=\sec^2(x)
$$
$$
\frac{d}{dx}\bigl( \cot(x) \bigr)=-\csc^2(x)
$$
$$
\frac{d}{dx}\bigl( \sec(x) \bigr)=\sec(x)\tan(x)
$$
$$
\frac{d}{dx}\bigl( \csc(x) \bigr)=-\csc(x)\cot(x)
$$
$$
\frac{d}{dx}\bigl( \sin^{-1}(x) \bigr)= \frac{1}{\sqrt{1-x^2}} $$
$$
\frac{d}{dx}\bigl( \tan^{-1}(x) \bigr)= \frac{1}{{1+x^2}} $$
$$
\frac{d}{dx}\bigl( \sec^{-1}(x) \bigr)= \frac{1}{x\sqrt{x^2-1}} $$
|
|