Summary
Trigonometric Derivatives
$\displaystyle \frac{d}{dx} \sin(x) = \cos(x)$
$\displaystyle \frac{d}{dx} \cos(x) = -\sin(x)$
$\displaystyle \frac{d}{dx} \tan(x) = \sec^2(x)$
$\displaystyle \frac{d}{dx} \cot(x) = -\csc^2(x)$
$\displaystyle \frac{d}{dx} \sec(x) = \sec(x) \tan(x)$
$\displaystyle \frac{d}{dx} \csc(x) = -\csc(x) \cot(x)$
|
Notice that the derivative of a co-function (let's call it co-$f$) is minus co-$(f')$.
|