M408M Learning Module Pages
Main page Chapter 10: Parametric Equations and Polar CoordinatesLearning module LM 10.1: Parametrized Curves:Learning module LM 10.2: Calculus with Parametrized Curves:Learning module LM 10.3: Polar Coordinates:Definitions of polar coordinatesGraphing polar functions Computing slopes of tangent lines Learning module LM 10.4: Areas and Lengths of Polar Curves:Learning module LM 10.5: Conic Sections:Learning module LM 10.6: Conic Sections in Polar Coordinates:Chapter 12: Vectors and the Geometry of SpaceChapter 13: Vector FunctionsChapter 14: Partial DerivativesChapter 15: Multiple Integrals |
Computing slopes of tangent linesTo compute slopes of tangent lines to a polar curve r=f(θ), we treat it as a parametrized curve with θ=t and r=f(t). (Equivalently, we can use θ as our parameter). This means that x=rcos(θ)=f(t)cos(t);y=rsin(θ)=f(t)sin(t). Taking derivatives we get dx/dt=−f(t)sin(t)+f′(t)cos(t);dy/dt=f(t)cos(t)+f′(t)sin(t). That's enough information for us to compute dy/dx: \begin{eqnarray*}\frac{dy}{dx} &=& \frac{dy/dt}{dx/dt} \cr &=& \frac{f(t)\cos(t) + f'(t) \sin(t)}{-f(t) \sin(t) + f'(t) \cos(t)} \cr &=& \frac{r \cos(\theta) + r' \sin(\theta)}{-r\sin(\theta) + r' \cos(\theta)}, \end{eqnarray*} where r' means dr/d\theta. |