Processing math: 57%
M408M Learning Module Pages
Main page

Chapter 10: Parametric Equations and Polar Coordinates

Learning module LM 10.1: Parametrized Curves:

Learning module LM 10.2: Calculus with Parametrized Curves:

Learning module LM 10.3: Polar Coordinates:

Learning module LM 10.4: Areas and Lengths of Polar Curves:

      Area inside a polar curve
      Area between polar curves
      Arc lengths of polar curves

Learning module LM 10.5: Conic Sections:

Learning module LM 10.6: Conic Sections in Polar Coordinates:

Chapter 12: Vectors and the Geometry of Space


Chapter 13: Vector Functions


Chapter 14: Partial Derivatives


Chapter 15: Multiple Integrals



Arc lengths of polar curves

Arc Length of Polar Curves

The key to computing the length of a polar curve is to think of it as a parametrized curve with parameter θ. (When computing the slope of a polar curve, we called the parameter t and set θ=t. Calling the parameter θ is equivalent and saves a step.) Then x=rcos(θ);y=rsin(θ).Taking derivatives we getdxdθ=rcos(θ)rsin(θ);dydθ=rsin(θ)+rcos(θ), where r is shorthand for dr/dθ. Squaring gives \begin{eqnarray*}\left ( \frac{dx}{d\theta}\right)^2 &=& (r')^2 \cos^2(\theta) + r^2 \sin^2(\theta) - 2 r r' \sin(\theta) \cos(\theta); \cr \left ( \frac{dy}{d\theta}\right)^2 &=& (r')^2 \sin^2(\theta) + r^2 \cos^2(\theta) + 2 r r' \sin(\theta) \cos(\theta).\end{eqnarray*} Adding then gives \left (\frac{dx}{d\theta}\right )^2 + \left ( \frac{dy}{d\theta} \right )^2 = r^2 + \left ( \frac{dr}{d\theta}\right)^2, \qquad \hbox{so}

The arc length of a polar curve r=f(\theta) between \theta=a and \theta=b is given by the integral L = \int_a^b \sqrt{r^2 + \left ( \frac{dr}{d\theta}\right )^2} \, d\theta.