M408M Learning Module Pages
Main page Chapter 10: Parametric Equations and Polar CoordinatesLearning module LM 10.1: Parametrized Curves:Learning module LM 10.2: Calculus with Parametrized Curves:Learning module LM 10.3: Polar Coordinates:Learning module LM 10.4: Areas and Lengths of Polar Curves:Area inside a polar curveArea between polar curves Arc lengths of polar curves Learning module LM 10.5: Conic Sections:Learning module LM 10.6: Conic Sections in Polar Coordinates:Chapter 12: Vectors and the Geometry of SpaceChapter 13: Vector FunctionsChapter 14: Partial DerivativesChapter 15: Multiple Integrals |
Arc lengths of polar curvesThe key to computing the length of a polar curve is to think of it as a parametrized curve with parameter θ. (When computing the slope of a polar curve, we called the parameter t and set θ=t. Calling the parameter θ is equivalent and saves a step.) Then x=rcos(θ);y=rsin(θ).Taking derivatives we getdxdθ=r′cos(θ)−rsin(θ);dydθ=r′sin(θ)+rcos(θ), where r′ is shorthand for dr/dθ. Squaring gives \begin{eqnarray*}\left ( \frac{dx}{d\theta}\right)^2 &=& (r')^2 \cos^2(\theta) + r^2 \sin^2(\theta) - 2 r r' \sin(\theta) \cos(\theta); \cr \left ( \frac{dy}{d\theta}\right)^2 &=& (r')^2 \sin^2(\theta) + r^2 \cos^2(\theta) + 2 r r' \sin(\theta) \cos(\theta).\end{eqnarray*} Adding then gives \left (\frac{dx}{d\theta}\right )^2 + \left ( \frac{dy}{d\theta} \right )^2 = r^2 + \left ( \frac{dr}{d\theta}\right)^2, \qquad \hbox{so}
|