<< Prev Next >>



Home

The Six Pillars of Calculus

The Pillars: A Road Map
A picture is worth 1000 words

Trigonometry Review

The basic trig functions
Basic trig identities
The unit circle
Addition of angles, double and half angle formulas
The law of sines and the law of cosines
Graphs of Trig Functions

Exponential Functions

Exponentials with positive integer exponents
Fractional and negative powers
The function $f(x)=a^x$ and its graph
Exponential growth and decay

Logarithms and Inverse functions

Inverse Functions
How to find a formula for an inverse function
Logarithms as Inverse Exponentials
Inverse Trig Functions

Intro to Limits

Overview
Definition
One-sided Limits
When limits don't exist
Infinite Limits
Summary

Limit Laws and Computations

Limit Laws
Intuitive idea of why these laws work
Two limit theorems
How to algebraically manipulate a 0/0?
Indeterminate forms involving fractions
Limits with Absolute Values
Limits involving indeterminate forms with square roots
Limits of Piece-wise Functions
The Squeeze Theorem

Continuity and the Intermediate Value Theorem

Definition of continuity
Continuity and piece-wise functions
Continuity properties
Types of discontinuities
The Intermediate Value Theorem
Summary of using continuity to evaluate limits

Limits at Infinity

Limits at infinity and horizontal asymptotes
Limits at infinity of rational functions
Which functions grow the fastest?
Vertical asymptotes (Redux)
Summary and selected graphs

Rates of Change

Average velocity
Instantaneous velocity
Computing an instantaneous rate of change of any function
The equation of a tangent line
The Derivative of a Function at a Point

The Derivative Function

The derivative function
Sketching the graph of $f'$
Differentiability
Notation and higher-order derivatives

Basic Differentiation Rules

The Power Rule and other basic rules
The derivative of $e^x$

Product and Quotient Rules

The Product Rule
The Quotient Rule

Derivatives of Trig Functions

Necessary Limits
Derivatives of Sine and Cosine
Derivatives of Tangent, Cotangent, Secant, and Cosecant
Summary

The Chain Rule

Two Forms of the Chain Rule
Version 1
Version 2
Why does it work?
A hybrid chain rule

Implicit Differentiation

Introduction
Examples
Derivatives of Inverse Trigs via Implicit Differentiation
A Summary

Derivatives of Logs

Formulas and Examples
Logarithmic Differentiation

Derivatives in Science

In Physics
In Economics
In Biology

Related Rates

Overview
How to tackle the problems
Example (ladder)
Example (shadow)

Linear Approximation and Differentials

Overview
Examples
An example with negative $dx$

Differentiation Review

How to take derivatives
Basic Building Blocks
Advanced Building Blocks
Product and Quotient Rules
The Chain Rule
Combining Rules
Implicit Differentiation
Logarithmic Differentiation
Conclusions and Tidbits

Absolute and Local Extrema

Definitions
The Extreme Value Theorem
Critical Numbers
Steps to Find Absolute Extrema

The Mean Value and other Theorems

Rolle's Theorems
The Mean Value Theorem
Finding $c$

$f$ vs. $f'$

Increasing/Decreasing Test and Critical Numbers
Process for finding intervals of increase/decrease
The First Derivative Test
Concavity
Concavity, Points of Inflection, and the Second Derivative Test
The Second Derivative Test
Visual Wrap-up

Indeterminate Forms and L'Hospital's Rule

What does $\frac{0}{0}$ equal?
Examples
Indeterminate Differences
Indeterminate Powers
Three Versions of L'Hospital's Rule
Proofs

Optimization

Strategies
Another Example

Newton's Method

The Idea of Newton's Method
An Example
Solving Transcendental Equations
When NM doesn't work

Anti-derivatives

Antiderivatives
Common antiderivatives
Initial value problems
Antiderivatives are not Integrals

The Area under a curve

The Area Problem and Examples
Riemann Sum Notation
Summary

Definite Integrals

Definition of the Integral
Properties of Definite Integrals
What is integration good for?
More Applications of Integrals

The Fundamental Theorem of Calculus

Three Different Concepts
The Fundamental Theorem of Calculus (Part 2)
The Fundamental Theorem of Calculus (Part 1)
More FTC 1

The Indefinite Integral and the Net Change

Indefinite Integrals and Anti-derivatives
A Table of Common Anti-derivatives
The Net Change Theorem
The NCT and Public Policy

Substitution

Substitution for Indefinite Integrals
Examples to Try
Revised Table of Integrals
Substitution for Definite Integrals
Examples

Area Between Curves

Computation Using Integration
To Compute a Bulk Quantity
The Area Between Two Curves
Horizontal Slicing
Summary

Volumes

Slicing and Dicing Solids
Solids of Revolution 1: Disks
Solids of Revolution 2: Washers
More Practice


Exponential growth and decay

Some examples

The key property of exponential functions is that the rate of growth (or decay) is proportional to how much is already there. As a result, the following real-world situations (and others!) are modeled by exponential functions:

  • The population of a colony of bacteria can double every 20 minutes, as long as there is enough space and food. The more bacteria you already have, the more new bacteria you get. This is modeled by the function $P(t) = P_0 2^{t/20}$, where $P_0$ is the number of bacteria you start with and $t$ is the time, measured in minutes.
  • The amount of money in a bank account grows exponentially, since the amount of interest you earn is proportional to the amount of money you have. If your annual interest rate is $r$, then the law of compound interest says that $A(t) = A_0 (1+r)^t$, where $t$ is the elapsed time in years and $A_0$ is the amount of money you start with.
  • In radioactive decay, a certain fraction of the atoms decay every second, so the rate of shrinkage is proportional to how much is there. The law is $Y(t) = Y_0 2^{-t/\tau}$, where the constant $\tau$ is called the half-life of the material.

The number $e$

The numerical value of $e$ is approximately 2.718281828; since $e$ is irrational, the decimal part neither terminates or repeats.

$e$ shows up in many places in mathematics.  Keep an eye out throughout calculus for this fascinating number!

For example (for those of you who know the concept of the proportionality constant):  The exact proportionality constant for the function $a^x$ depends on the number $a$. When $a=2$, the constant is around 0.69. When $a=3$, the constant is around 1.1.  $e$ is the special number for which the proportionality constant is exactly 1. That is, the rate at which $e^x$ grows is exactly $e^x$.  We will see this rate when we differentiate $e^x$ this semester.