Processing math: 40%
M408M Learning Module Pages
Main page

Chapter 10: Parametric Equations and Polar Coordinates

Chapter 12: Vectors and the Geometry of Space

Learning module LM 12.1: 3-dimensional rectangular coordinates:

Learning module LM 12.2: Vectors:

Learning module LM 12.3: Dot products:

      Definitions
      Properties
      Projections and components
      Worked problems

Learning module LM 12.4: Cross products:

Learning module LM 12.5: Equations of Lines and Planes:

Learning module LM 12.6: Surfaces:


Chapter 13: Vector Functions


Chapter 14: Partial Derivatives


Chapter 15: Multiple Integrals



Properties

02. Dot Products p2 A number of properties follow immediately from the definition of the dot product, using the perpendicular vectors i, j, k:

These properties provide a convenient algebraic way of computing the dot product of vectors u=u1,u2,u3=u1i+u2j+u3k,v=v1,v2,v3=v1i+v2j+v3k. By expanding using also Properties 1, 2, and 3, we get uv =(u1i+u2j+u3k)(v1i+v2j+v3k) =  u1v1+u2v2+u3v3.

Example 1: Determine the dot product of the vectors a = 3,2,3,b = 2,1,3.
Solution: The dot product, ab, of vectors a = a1,,a2,a3,b = b1,b2,b3 is given by
ab = a1b1+a2b2+a3b3. So when a = 3,2,3,b = 2,1,3 we see that ab = (3)(2)+(2)(1)+(3)(3) = 5.


   Example 2: determine the dot product of the vectors a,b when and the angle between {\bf a},\, {\bf b} is \pi/3.

Solution: the dot product is defined in
coordinate-free form by {\bf a}\cdot{\bf b} \ = \ \|{\bf a}\|\,\|{\bf b}\|\,\cos \theta where \theta is the angle between them. When \|{\bf a}\| = 4\,, \ \|{\bf b}\| \ = \ 5 and \theta = \pi/3, therefore, {\bf a}\,\cdot\,{\bf b} \ = \ 20 \cos \frac{\pi}{3} \ = \ 10\,.



Example 3: Find the angle beween the vectors {\bf a},\, {\bf b} when {\bf a} = \langle 1,1,1 \rangle and {\bf b} = \langle 1, -1, 1 \rangle.

Solution: Using coordinates, we see that {\bf a} \cdot {\bf b} = 1(1)+1(-1)+1(1)=1.
Since \|{\bf a}\|=\|{\bf b}\|=\sqrt{3}, \cos(\theta) = \frac{{\bf a}\cdot{\bf b}}{\|{\bf a}\|\, \|{\bf b}\|} = \frac{1}{3}, so \theta = \cos^{-1}(\frac{1}{3}) \approx 70.5^\circ.