M408M Learning Module Pages
Main page Chapter 10: Parametric Equations and Polar CoordinatesChapter 12: Vectors and the Geometry of SpaceChapter 13: Vector FunctionsChapter 14: Partial DerivativesChapter 15: Multiple IntegralsLearning module LM 15.1: Multiple integralsBackgroundWhat is a double integral? Volumes are double integrals Learning module LM 15.2: Multiple integrals over rectangles:Learning module LM 15.3: Double integrals over general regions:Learning module LM 15.4: Double integrals in polar coordinates:Learning module LM 15.5a: Multiple integrals in physics:Learning module LM 15.5b: Integrals in probability and statistics:Learning module LM 15.10: Change of variables: |
BackgroundWhen talking about any mathematical quantity, it's important to keep track of three different questions:
This is especially true for integration, where the three questions have very different answers:
Of these applications, the easiest to understand is area under a curve, which is why we used area to introduce integrals. Likewise, we will use volume to introduce double integrals. But remember: ordinary integrals are about much more than area, and double integrals are about much more than volume. In the following video, we review the ideas and definitions of one-dimensional integrals. Not how to compute an integral, but what it is and what it's good for. On the next page, we'll see how the exact same ideas work in two and three dimensions. We'll tackle 'how do you compute it?' in the next learning module. Remember the main idea of integration: The whole is the sum of the parts. Integration is a procedure for computing bulk quantities like area, volume, mass, distance, moment of inertia, and wealth. If $f(x)$ is the density of a quantity on interest, then
|