M408M Learning Module Pages
Main page Chapter 10: Parametric Equations and Polar CoordinatesChapter 12: Vectors and the Geometry of SpaceChapter 13: Vector FunctionsChapter 14: Partial DerivativesChapter 15: Multiple IntegralsLearning module LM 15.1: Multiple integralsLearning module LM 15.2: Multiple integrals over rectangles:Learning module LM 15.3: Double integrals over general regions:Type I and Type II regionsExamples Order of integration Area and volume revisited Learning module LM 15.4: Double integrals in polar coordinates:Learning module LM 15.5a: Multiple integrals in physics:Learning module LM 15.5b: Integrals in probability and statistics:Learning module LM 15.10: Change of variables: |
Area and volume revisitedNow that we understand what double integrals are, we can use them to compute areas of regions and volumes of solids of revolution. The following video shows how. The area of a region $R$ is just $\iint_R 1 \,dA$. Rewriting that as an iterated integral gives us the formulas for area that we derived a long time ago. If $R$ is a Type I region, bounded by $y=g(x)$, $y=h(x)$, $x=a$ and $x=b$, then the area of $R$ is \begin{eqnarray*} \iint_R 1 \, dA &=& \int_a^b \int_{g(x)}^{h(x)} 1\, dy\,dx\\ &=& \int_a^b [h(x)-g(x)] dx. \end{eqnarray*} This is our familiar formula for the area between two curves. If $R$ is a Type II region, bounded by $x=g(y)$, $x=h(y)$, $y=c$ and $y=d$, then the area of $R$ is \begin{eqnarray*} \iint_R 1 \, dA &=& \int_c^d \int_{g(y)}^{h(y)} 1\, dx\,dy\\ &=& \int_c^d [h(y) - g(y)] dx. \end{eqnarray*} Now suppose that $R$ lies above the $x$-axis. If we rotate the region $R$ around the $x$ axis, then the volume of the solid of revolution is $\displaystyle{\iint_R 2\pi y \,dA}$. If $R$ is a Type I region and we integrate first over $y$ and then over $x$, we get \begin{eqnarray*} \iint_R 2 \pi y dA & = & \int_a^b \int_{g(x)}^{h(x)} 2 \pi y \,dy\, dx \\ & = & \int_a^b \left . \pi y^2 \right |_{g(x)}^{h(x)} dx \\ & = & \int_a^b \pi [h(x)^2 - g(x)^2] dx. \end{eqnarray*} This is our familiar formula for volumes by washers. On the other hand, if $R$ is a Type II region and we integrate first over $x$, we get \begin{eqnarray*} \iint_R 2 \pi y dA & = & \int_c^d \int_{g(y)}^{h(y)} 2 \pi y \,dx\, dy \\ & = & \int_a^b 2 \pi y [h(y) - g(y)] dy. \end{eqnarray*} This is the formula for volume by cylindrical shells. Likewise, if $R$ lies to the right of the $y$ axis and we rotate around the $y$ axis, then the volume the solid of revolution is $\displaystyle{\iint_R 2\pi x\, dA}$. Integrating $dx \, dy$ gives volume by washers and integrating $dy\,dx$ gives volume by cylindrical shells. |