M408M Learning Module Pages
Main page Chapter 10: Parametric Equations and Polar CoordinatesChapter 12: Vectors and the Geometry of SpaceLearning module LM 12.1: 3-dimensional rectangular coordinates:Learning module LM 12.2: Vectors:Learning module LM 12.3: Dot products:Learning module LM 12.4: Cross products:Areas in the planeDefinition Computing cross products Applications Learning module LM 12.5: Equations of Lines and Planes:Learning module LM 12.6: Surfaces:Chapter 13: Vector FunctionsChapter 14: Partial DerivativesChapter 15: Multiple Integrals |
Areas in the plane
Notice that \begin{eqnarray*} 0 &=& A({\bf a}+{\bf b},{\bf a}+{\bf b}), \cr\cr &=& A({\bf a},{\bf a}) + A({\bf a},{\bf b}) + A({\bf b},{\bf a}) + A({\bf b},{\bf b}), \cr\cr &=& A({\bf a}, {\bf b}) + A({\bf b}, {\bf a}), \qquad \hbox{so} \cr \cr A({\bf b}, {\bf a}) &=& - A({\bf a}, {\bf b}).\end{eqnarray*} Unlike ordinary multiplication, the area function cares about which entry comes first. This means that $A({\bf i}, {\bf i})= A({\bf j}, {\bf j})= 0 $, that $A({\bf i}, {\bf j})=1$ (since ${\bf i}$ and ${\bf j}$ span the unit square), and that $A({\bf j}, {\bf i})=-1$. Putting this together, we get the formula for area: \begin{eqnarray*}A({\bf a}, {\bf b}) & = & A(a_1 {\bf i}+ a_2{\bf j}, b_1 {\bf i}+ b_2{\bf j}) \cr \cr & = & a_1b_1 A({\bf i}, {\bf i}) + a_1b_2 A({\bf i}, {\bf j}) + a_2b_1 A({\bf j}, {\bf i}) + a_2b_2 A({\bf j}, {\bf j}) \cr \cr & = & a_1 b_2 - a_2 b_1. \end{eqnarray*} You may have seen this formula before as the determinant of the $2 \times 2$ matrix $$\left [\begin{array}{cc} a_1 & a_2 \\ b_1 & b_2 \end{array}\right ]\,.$$ The following video describes determinants of $2\times 2$ and $3 \times 3$ matrices, and explains how they are related to areas and volumes. |