M408M Learning Module Pages
Main page Chapter 10: Parametric Equations and Polar CoordinatesChapter 12: Vectors and the Geometry of SpaceLearning module LM 12.1: 3-dimensional rectangular coordinates:Learning module LM 12.2: Vectors:Learning module LM 12.3: Dot products:Learning module LM 12.4: Cross products:Areas in the planeDefinition Computing cross products Applications Learning module LM 12.5: Equations of Lines and Planes:Learning module LM 12.6: Surfaces:Chapter 13: Vector FunctionsChapter 14: Partial DerivativesChapter 15: Multiple Integrals |
Computing cross productsComputing Cross Products: On the previous page, we saw the definition of a cross product:
A number of properties follow immediately from this definition and the fact that $\{{\bf i},\, {\bf j},\, {\bf k}\}$ is a right-handed system: Algebraic Formula: The previously properties provide good algebraic ways of computing the cross product of $${\bf a}\,=\,\langle\,a_1,\, a_2,\, a_3\,\rangle\,=\, a_1\,{\bf i}+ a_2\,{\bf j}+a_3\,{\bf k}\,,\qquad \qquad {\bf b}\,=\, \langle\,b_1,\, b_2,\, b_3\,\rangle\,=\, b_1\, {\bf i}+b_2 \,{\bf j}+b_3\, {\bf k}\,.$$ By Properties 1, 2, and 3, \begin{eqnarray*} {\bf a}\times{\bf b} &=& a_1b_1 {\bf i} \times {\bf i} + a_1 b_2 {\bf i} \times {\bf j} + a_1 b_3 {\bf i} \times {\bf k} + \hbox{(6 more terms like these)} \cr\cr &=& (a_2 b_3 - a_3 b_2)\, {\bf i}- (a_1 b_3 - a_3 b_1)\,{\bf j}+(a_1 b_2 - a_2b_1)\, {\bf k}\,.\end{eqnarray*} By properties of determinants, therefore, $${\bf a}\times{\bf b}\ = \ \left|\begin{array}{cc} a_2 & a_3 \\ b_2 & b_3 \end{array}\right|{\bf i}- \left| \begin{array}{cc} a_1 & a_3 \\ b_1 & b_3 \end{array}\right|{\bf j}+\left| \begin{array}{cc} a_1 & a_2 \\ b_1 & b_2 \end{array}\right|{\bf k} \ = \ \left|\begin{array}{ccc} {\bf i} & {\bf j} & {\bf k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{array}\right|\,.$$ The two products of vectors can be combined: the (scalar) triple product of vectors $\bf a$, $\bf b$ and $\bf c$ is $${\bf a}\, \cdot \,({\bf b} \times {\bf c}) \ = \ a_1 \left|\begin{array}{cc} b_2 & b_3 \\ c_2 & c_3 \end{array}\right|- a_2\left| \begin{array}{cc} b_1 & b_3 \\ c_1 & c_3 \end{array}\right|+a_3\left| \begin{array}{cc} b_1 & b_2 \\ c_1 & c_2 \end{array}\right| \ = \ \left|\begin{array}{ccc} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{array}\right|\,.$$ There's also a vector triple product ${\bf a} \times ({\bf b} \times {\bf c})$, but we won't need it.
|