The following video demonstrates ways to use the change-of-variable
formula to simplify integrals. In it, we compute the integral of
$e^{x+2y}$ over a parallelogram, and the integral of $x^2$ over an off-center
ellipse.
Example 1: Let's illustrate this change of variable idea in the
case of polar coordinates. The Astrodome in Houston as shown to the
right below might be modelled mathematically as the region below the
cap of a sphere
$$ x^2+y^2+z^2 \ = \ R^2$$
above a circular disk
$$ D = \{(x,\,y) : x^2 + y^2 \le a^2\}\,.$$
In terms of double integrals its
$$ \hbox{Volume}
\ = \ \int\int_D\, \sqrt{R^2 - x^2 - y^2}\, dx dy\,.$$
Rotational symmetry suggests changing to polar coordinates!
Solution: In polar coordinates,
$$D \ = \ \bigl\{ (r,\, \theta) : 0 \le r \le a\,, \ 0 \le \theta \le 2 \pi\,\bigl\}$$
is a rectangle, while
$$\sqrt{R^2 - x^2 - y^2} \ = \ \sqrt{R^2 - r^2(\cos^2 \theta +\sin^2 \theta)} \,.$$
So after changing to polar coordinates,
$$ I\ = \ \int_0^a\Bigl(\,\int_0^{2 \pi}\, \sqrt{R^2 - r^2}\ d\theta \Bigr)\, r dr\,.$$
The presence of the Jacobian (here the $r$-factor) makes this an easy repeated integral using the substitution $u = r^2$. For then
$$I = \pi \int_0^a\, \sqrt{R^2 - u}\, du= \frac{2\pi}{3}\Bigl[\, -(R^2 - u)^{3/2}\,\Bigl]_0^a\,.$$
Consequently, the mathematical Astrodome has
$$ \hbox{Volume}\ = \ \frac{2\pi}{3}\Bigl(\, R^{3} - (R^2 - a^2)^{3/2}\Bigr)\, .$$
The Astrodome problem showed how this works when ${\bf \Phi}$ is the
change of coordinates from polar to Cartesian coordinates, but matrix
mappings often help too. They usually come in two 'flavors' as
indicated in
Example 2a: Use the transformation
$${\bf \Phi} : (u,\, v) \ \longrightarrow \ \bigl(\,x(u,\, v),\ y(u,\, v)\, \bigr)$$
with
$$x \ = \ \frac{1}{2}\bigl(u-v\bigl) \,, \quad y \ = \ \frac{1}{2}\bigl(u+v\bigl) $$
to evaluate the integral
$$ I \ = \ \int\int_D\ (x+y) \, dx dy$$
when $D$ is the square shown to the right.
Example 2b: Use an appropriate transformation
$${\bf \Phi} : (u,\, v) \ \longrightarrow \ \bigl(\,x(u,\, v),\ y(u,\,
v)\, \bigr)$$
to evaluate the integral
$$ I \ = \ \int\int_D\ (x+y) \, dx dy$$
when $D$ is the square having corner points
$$(0,\,0)\,, \ \ (1,\, 1)\,, \ \ (0,\, 2)\,, \ \ (-1,\, 1)\,.$$
as shown to the right.
Solving 2a should be easier than 2b because we are
already given the transformation, but both cases are very similar in
the sense that we'll end up solving a pair of simultaneous equations.
Solution for Example 2a: When
$$x \ = \ \frac{1}{2}\bigl(u-v\bigl) \,, \quad y \ = \ \frac{1}{2}\bigl(u+v\bigl) $$
the Jacobian of the transformation
$${\bf \Phi} : (u,\, v) \ \longrightarrow \ \bigl(\,x(u,\, v),\ y(u,\, v)\, \bigr)$$
is given by
$$\frac{\partial (x,\,y)}{\partial (u,\,v)} \ = \ \left|\begin{matrix} \displaystyle {\frac{1}{2}}& \displaystyle{-\frac{1}{2}}\cr
\\
\displaystyle {\frac{1}{2}}& \displaystyle { \frac{1}{2}}\end{matrix}\right|\ = \ \frac{1}{2}\,.$$
On the other hand,
$$x+y \ = \ \frac{1}{2}\bigl(u-v\bigl) + \frac{1}{2}\bigl(u+v\bigl)\ = \ u\,.$$
So if ${\bf \Phi}$ maps $D^*$ onto $D$, then
$$I \ = \ \frac{1}{2}\int_a^b\int_c^d\ u\ du dv\,.$$
It remains to find $a,\, b,\, c,\,d$ knowing that
$${\bf \Phi}(a,\,c)\,=\, (0,\,0)\,, \quad {\bf \Phi}(b,\,c)\,=\, (1,\,1)$$
$${\bf \Phi}(b,\,d)\,=\, (0,\,2)\,, \quad {\bf \Phi}(a,\,d)\,=\, (-1,\,1)$$
But $x,\, y$ is given in terms of $u,\, v$:
$$2x \ = \ u-v \,, \quad 2y \ = \ u+v\,, $$
so we need to solve for $u,\,v$:
$$u\ = \ x+y \,, \qquad v\ = \ y-x\,.$$
This shows that
$$a \,=\, c\,=\, 0, \quad b\,=\, 2, \quad d\,=\, 2\,,$$
Consequently,
$$I \ = \ \frac{1}{2}\int_0^2\int_0^2\ u\, dudv\ = \ 2\, .$$
Solution for Example 2b: Since we know the corners of $D$,
we can use the point slope formula to express $D$ as the square
enclosed by the pairs of parallel lines $$y=x,\ \ y= x+2, \quad y=-x,\
\ y=-x +2\,.$$ Thus $D$ is the region $$\big\{ (x,\,y) : 0 \le x+y \le
2,\ \ 0 \le y -x \le 2\big\}$$ in the $xy$-plane. This suggests
setting
$$ u \,=\, x+y,\quad v\,=\, y-x\,,$$$$ D^* \ = \ \big\{ (u,\,v) : 0\le u \le 2,\ 0 \le v \le 2\big\}\,.$$
To determine
$${\bf \Phi} : (u,\, v) \to (x(u,\,v),\, v(u,\, v))$$
we need to express $x,\, y$ in terms of $u,\, v$. Solve for $x,\,y$ in the earlier linear equations:
$$x \ = \ \frac{1}{2}\bigl(u-v\bigl) \,, \quad y \ = \ \frac{1}{2}\bigl(u+v\bigl) \,.$$
Consequently, after calculating the Jacobian as before we get
$$I \ = \ \frac{1}{2}\int_0^2\int_0^2\ u\, dudv\ = \ 2\, .$$