M408M Learning Module Pages
Main page
Chapter 10: Parametric Equations
and Polar Coordinates
Chapter 12: Vectors and the Geometry of Space
Chapter 13: Vector Functions
Chapter 14: Partial Derivatives
Chapter 15: Multiple Integrals
Learning module LM 15.1:
Multiple integrals
Learning module LM 15.2:
Multiple integrals over rectangles:
Learning module LM 15.3:
Double integrals over general regions:
Learning module LM 15.4:
Double integrals in polar coordinates:
Learning module LM 15.5a:
Multiple integrals in physics:
Learning module LM 15.5b:
Integrals in probability and statistics:
Learning module LM 15.10:
Change of variables:
Change of variable in 1 dimension
Mappings in 2 dimensions
Jacobians
Examples
Cylindrical and spherical coordinates
|
|
Cylindrical and spherical coordinates
Cylindrical and Spherical Coordinates
The change-of-variables formula with 3 (or more) variables is just
like the formula for two variables.
If we do a change-of-variables
$\Phi$ from coordinates $(u,v,w)$ to coordinates $(x,y,z)$, then the
Jacobian is the determinant
$$\frac{\partial(x,y,z)}{\partial(u,v,w)} \ = \ \left | \begin{matrix}
\frac{\partial x}{\partial u} &
\frac{\partial x}{\partial v} &
\frac{\partial x}{\partial w} \\
\frac{\partial y}{\partial u} &
\frac{\partial y}{\partial v} &
\frac{\partial y}{\partial w} \\
\frac{\partial z}{\partial u} &
\frac{\partial z}{\partial v} &
\frac{\partial z}{\partial w} \end{matrix}
\right |,$$
and the volume element is
$$dV \ = \ dx\,dy\,dz \ = \
\left | \frac{\partial(x,y,z)}{\partial(u,v,w)}\right | du\,dv\,dw.$$
After rectangular (aka Cartesian) coordinates, the two most common an
useful coordinate systems in 3 dimensions are cylindrical coordinates
(sometimes called cylindrical polar coordinates) and spherical
coordinates (sometimes called spherical polar coordinates).
Cylindrical Coordinates: When there's symmetry about an
axis, it's convenient to take the $z$-axis as the axis of symmetry
and use polar coordinates $(r,\, \theta)$ in the $xy$-plane to measure
rotation around the $z$-axis. Check the interactive figure to the
right. A point $P$ is specified by coordinates $(r,\, \theta, \, z)$
where $z$ is the height of $P$ above the $xy$-plane.
(i) What happens to $P$ as $z$ changes?
(ii) What's the relation between $r$, $P$ and the axis of symmetry?
(iii) What are the natural restrictions on $\theta$?
(iv) The relation between Cartesian coordinates $(x,\,y,\,z)$ and
Cylindrical coordinates $(r,\, \theta, \, z)$ for each point $P$ in $3$-space
is
$$ x \ = \ r \cos \theta,\qquad y \ = \ r \sin \theta, \qquad z \ = \ z\,.$$
|
|
Problem: Find the Jacobian of the transformation
$(r,\theta,z) \to (x,y,z)$ of cylindrical coordinates.
Solution: This calculation is almost identical to finding the
Jacobian for polar coordinates. Our partial derivatives are:
\begin{eqnarray*}
\frac{\partial x}{\partial r} = \cos(\theta), &
\frac{\partial x}{\partial \theta} = -r \sin(\theta), &
\frac{\partial x}{\partial z} = 0, \\
\frac{\partial y}{\partial r} = \sin(\theta), &
\frac{\partial y}{\partial \theta} = r \cos(\theta), &
\frac{\partial y}{\partial z} = 0, \cr
\frac{\partial z}{\partial r} = 0, &
\frac{\partial z}{\partial \theta} = 0, &
\frac{\partial z}{\partial z} = 1. \cr
\end{eqnarray*}
|
Our Jacobian is then the $3\times 3$ determinant
$$\frac{\partial(x,y,z)}{\partial(r,\theta,z)} \ = \
\left | \begin{matrix} \cos(\theta) & -r \sin(\theta) & 0 \cr
\sin(\theta) & r \cos(\theta) & 0 \cr
0&0&1 \end{matrix} \right | \ = \ r,$$
and our volume element is $dV = dx\, dy\,dz = r \, dr\,d\theta\,dz$.
|
Spherical Coordinates: A sphere is symmetric in all directions
about its center, so it's convenient to take the center of the sphere
as the origin. Then we let $\rho$ be the distance from the origin to
$P$ and $\phi$ the angle this line from the origin to $P$ makes with
the $z$-axis. Finally, as before, we use $\theta$ from polar
coordinates in the $xy$-plane to measure rotation around the
$z$-axis. Investigate the interactive figure to the right. A point $P$
is specified by $3$ coordinates $(\rho,\, \theta, \, \phi)$.
[Warning: Most physics texts swap the roles of $\theta$ and $\phi$.]
(i) The relation between Cartesian coordinates
$(x,\,y,\,z)$ and Spherical Polar coordinates $(\rho,\, \theta, \,
\phi)$ for each point $P$ in $3$-space is
$$\ x \ = \ \rho \cos \theta \sin
\phi,\qquad y \ = \ \rho \sin \theta \sin \phi, \qquad z \ = \ \rho
\cos \phi\,.$$
(ii) The natural restrictions on $\rho,\,
\theta,$ and $\phi$ are $$\color{rgb(0, 51, 153)}{ 0\, \le \,
\rho \, < \, \infty\,, \qquad 0\, \le \, \theta \, < \, 2\pi \,,
\qquad 0\, \le \, \phi \, \le \, \pi\,.}$$
(iii) Points on the earth are frequently specified by
Latitude and Longitude. How do these relate to $\theta$
and $\phi$?
|
|
Problem: Find the Jacobian of the transformation
$(\rho,\theta, \phi) \to (x,y,z)$ of spherical coordinates.
Solution: Now our partial derivatives are:
\begin{eqnarray*}
\frac{\partial x}{\partial \rho} = \cos(\theta)\sin(\phi), &
\frac{\partial x}{\partial \theta} = -\rho \sin(\theta) \sin(\phi), &
\frac{\partial x}{\partial \phi} = \rho \cos(\theta)\cos(\phi), \\
\frac{\partial y}{\partial \rho} = \sin(\theta)\sin(\phi), &
\frac{\partial y}{\partial \theta} = \rho \cos(\theta) \sin(\phi), &
\frac{\partial y}{\partial \phi} = \rho \sin(\theta)\cos(\phi), \\
\frac{\partial z}{\partial \rho} = \cos(\phi), &
\frac{\partial z}{\partial \theta} = 0, &
\frac{\partial z}{\partial \phi} = -\rho \sin(\phi).
\end{eqnarray*}
|
Our Jacobian $\frac{\partial(x,y,z)}{\partial(\rho,\theta,\phi)}$
is then the $3\times 3$ determinant
$$\quad \left | \begin{matrix}
\cos(\theta)\sin(\phi) & -\rho \sin(\theta)\sin(\phi) &
\rho \cos(\theta) \cos(\phi) \cr
\sin(\theta)\sin(\phi) & \rho \cos(\theta)\sin(\phi) &
\rho \sin(\theta) \cos(\phi) \cr
\cos(\phi) & 0 & - \rho \sin(\phi). \end{matrix} \right |\quad$$
which works out to $\rho^2 \sin(\phi)$,
and our volume element is $dV = dx\, dy\,dz = \rho^2 \sin(\phi) \, d\rho\,
d\theta\,d\phi$.
|
Problem: Compute the volume of the ball $\rho \le R$
or radius $R$.
Solution: If $B$ is the unit ball, then its volume is
$\iiint_B 1 dV$. We convert to spherical coordinates to get
|
\begin{eqnarray*}
\hbox{Vol}(B) & = & \int_0^{\pi}\int_0^{2\pi} \int_0^R \rho^2 \sin(\phi)
d\rho d\theta d\phi \\
& = & \int_0^\pi \int_0^{2\pi} \frac{R^3\sin(\phi)}{3} d\theta d\phi \\
& = & \int_0^\pi \frac{2 \pi R^3 \sin(\phi)}{3} d\phi \\
& = & \frac{4 \pi R^3}{3}.
\end{eqnarray*}
|
|