back



      Bauer-Furuta learning seminar (spring 2025)
organized by myself and Ian Montague
fridays at 2 in pma 12.166
mailing list: bauerfuruta@utlists.utexas.edu



      schedule
week 1 (1/17): review of Seiberg-Witten invariants I (Ian, notes by Remy)
week 2 (1/24): review of Seiberg-Witten invariants II (Ian, notes by Remy)
week 3 (1/31): equivariant stable homotopy theory (Jemma, notes)
week 4 (2/7): bauer-furuta I, overview (Ian, notes by Jemma)
week 5 (2/14): bauer-furuta I, the monopole map and the Leray-Schauder-Schwarz construction (Abhishek, notes)
week 6 (2/21): bauer-furuta I, lecture III (John, notes by Jemma)
week 7 (2/28): bauer-furuta II, lecture I (Adrian)
week 8 (3/7): bauer-furuta II, lecture II (Abhishek)
week 9 (3/14): bauer-furuta II, lecture III (special π day lecture) (Remy)
week 10 (3/28): equivariant k-theory (Jemma)
week 11 (4/4): proof of 10/8-theorem I
week 12 (4/9): proof of 10/8-theorem II
(moved to Wednesday for Cas' thesis defense)
week 13 (4/18): exotic Dehn twists I
week 14 (4/25): exotic Dehn twists II



      sources
lecture notes on Seiberg-Witten invariants (Moore), a concise introduction to the Seiberg-Witten invariants
prerequisites (on equivariant stable homotopy) for Carlsson's lecture (Adams)
a survey of equivariant stable homotopy theory (Carlsson)
refined Seiberg-Witten invariants (Bauer)
a stable cohomotopy refinement of Seiberg-Witten invariants, I (Bauer and Furuta)
a stable cohomotopy refinement of Seiberg-Witten invariants, II (Bauer and Furuta)
monopole equation and the 11/8-Conjecture (Furuta)
equivariant k-theory (Segal)
the Dehn twist on a sum of two k3 surfaces (Kronheimer and Mrowka)