Upper Estimate
|
$$ \sum_{n=1}^\infty a_n \le\,
a_1 + \int_1^\infty f(x)\, dx$$
archive.cnx.org
|
|
Lower Estimate
|
$$ \sum_{n=1}^\infty a_n \ge
\int_1^\infty f(x) \,dx$$
archive.cnx.org
|
|
Bounds on series
|
$$ \int_1^\infty f(x) \,dx \le
\sum_{n=1}^\infty a_n \le\, a_1 + \int_1^\infty f(x)\, dx$$
|
(after putting together the estimates from above)
|
Estimate of series
|
$$s_{n-1}+\int_n^\infty
f(x)\,dx\le\sum_{i=1}^\infty a_i\le s_n+\int_n^\infty
f(x)\,dx$$
|
Explained in the video.
|