Home The Fundamental Theorem of CalculusThree Different ConceptsThe Fundamental Theorem of Calculus (Part 2) The Fundamental Theorem of Calculus (Part 1) More FTC 1 The Indefinite Integral and the Net ChangeIndefinite Integrals and Anti-derivativesA Table of Common Anti-derivatives The Net Change Theorem The NCT and Public Policy SubstitutionSubstitution for Indefinite IntegralsExamples to Try Revised Table of Integrals Substitution for Definite Integrals Examples Area Between CurvesComputation Using IntegrationTo Compute a Bulk Quantity The Area Between Two Curves Horizontal Slicing Summary VolumesSlicing and Dicing SolidsSolids of Revolution 1: Disks Solids of Revolution 2: Washers More Practice Integration by PartsIntegration by PartsExamples Integration by Parts with a definite integral Going in Circles Tricks of the Trade Integrals of Trig FunctionsAntiderivatives of Basic Trigonometric FunctionsProduct of Sines and Cosines (mixed even and odd powers or only odd powers) Product of Sines and Cosines (only even powers) Product of Secants and Tangents Other Cases Trig SubstitutionsHow Trig Substitution WorksSummary of trig substitution options Examples Completing the Square Partial FractionsIntroductionLinear Factors Irreducible Quadratic Factors Improper Rational Functions and Long Division Summary Strategies of IntegrationSubstitutionIntegration by Parts Trig Integrals Trig Substitutions Partial Fractions Improper IntegralsType 1 - Improper Integrals with Infinite Intervals of IntegrationType 2 - Improper Integrals with Discontinuous Integrands Comparison Tests for Convergence Differential EquationsIntroductionSeparable Equations Mixing and Dilution Models of GrowthExponential Growth and DecayLogistic Growth Infinite SequencesApproximate Versus Exact AnswersExamples of Infinite Sequences Limit Laws for Sequences Theorems for and Examples of Computing Limits of Sequences Monotonic Covergence Infinite SeriesIntroductionGeometric Series Limit Laws for Series Test for Divergence and Other Theorems Telescoping Sums and the FTC Integral TestRoad MapThe Integral Test Estimates of Value of the Series Comparison TestsThe Basic Comparison TestThe Limit Comparison Test Convergence of Series with Negative TermsIntroduction, Alternating Series,and the AS TestAbsolute Convergence Rearrangements The Ratio and Root TestsThe Ratio TestThe Root Test Examples Strategies for testing SeriesStrategy to Test Series and a Review of TestsExamples, Part 1 Examples, Part 2 Power SeriesRadius and Interval of ConvergenceFinding the Interval of Convergence Power Series Centered at $x=a$ Representing Functions as Power SeriesFunctions as Power SeriesDerivatives and Integrals of Power Series Applications and Examples Taylor and Maclaurin SeriesThe Formula for Taylor SeriesTaylor Series for Common Functions Adding, Multiplying, and Dividing Power Series Miscellaneous Useful Facts Applications of Taylor PolynomialsTaylor PolynomialsWhen Functions Are Equal to Their Taylor Series When a Function Does Not Equal Its Taylor Series Other Uses of Taylor Polynomials Partial DerivativesVisualizing Functions in 3 DimensionsDefinitions and Examples An Example from DNA Geometry of Partial Derivatives Higher Order Derivatives Differentials and Taylor Expansions Multiple IntegralsBackgroundWhat is a Double Integral? Volumes as Double Integrals Iterated Integrals over RectanglesHow To Compute Iterated IntegralsExamples of Iterated Integrals Cavalieri's Principle Fubini's Theorem Summary and an Important Example Double Integrals over General RegionsType I and Type II regionsExamples 1-4 Examples 5-7 Order of Integration |
Functions as Power Series A power series $\displaystyle\sum_{n=0}^\infty c_n x^n$ can be
thought of as a function of $x$ whose domain is the interval of
convergence. Conversely, many functions can be expressed as power series,
and we will be learning various ways to do this. This is
extremely valuable; for example, $e^x$ can be expressed as a power
series, which is really just an infinite polynomial. The
power series is easy to estimate by evaluating out to as many
terms as you wish. Consider $\displaystyle\sum_{n=0}^\infty r^n$. This is geometric series converges when $|r|<1$ and diverges otherwise. When it converges, its value is $\frac{1}{1-r}$. We take that series, and replace $r$ with $x$, getting a power series. We can express this as a function, as you see below below, as long as $|x|<1$. $$f(x)=\frac{1}{1-x} = \sum_{n=0}^\infty x^n = 1+x+x^2+x^3+x^4+\cdots\qquad\text{ as long as }\lvert x\rvert<1$$ We get a different function by replacing $x$ with $-x$: $$\displaystyle{g(x)=\frac{1}{1+x} = \sum_{n=0}^\infty (-x)^n = 1-x+x^2+\cdots}\quad\text{ as long as } \lvert -x\rvert=\lvert x\rvert<1.$$ The video will look at these and other examples arising from the geometric series.
DO: Work on the following two examples before reading ahead. Example 1: Find a power series representation of the function $\displaystyle\frac{x}{1+x^2}$, and determine for which $x$ it would be defined. Example 2: Find a power series representation of the function $\displaystyle\frac{1}{7+2x}$, and determine for which $x$ it would be defined. Solution 1: Replace $x$ (in our original $f(x)$ before the video) by $-x^2$, and multiply the expression by $x$. $$\displaystyle{\frac{x}{1+x^2} = x\sum_{n=0}^\infty (-x^2)^n =\sum_{n=0}^\infty x(-x^2)^n=\sum_{n=0}^\infty (-1)^n x^{2n+1}= x-x^3+x^5-x^7+\cdots}.$$For convergence, we need $|x^2|<1$, which simplifies to $\lvert x\rvert<1$. ----------------------------------------------------------------------------------------- Solution 2: Divide out a $7$ in the denominator, in order to have the constant equal to 1: $\displaystyle\frac{1}{7+2x}=\frac{1}{7}\frac{1}{1+\left(\frac{2x}7\right)}.$ Now we can see that we replace our original $x$ by $-\frac{2x}{7}$ and multiply the expression by $\frac17$. $$\displaystyle \frac{7x}{1+2x}=\left(\frac17\right)\sum_{n=0}^\infty\left(-\frac{2x}{7}\right)^n=\left(\frac17\right)\sum_{n=0}^\infty(-1)^n\left(\frac{2x}7 \right)^n=\sum_{n=0}^\infty(-1)^n\frac{(2x)^n}{7^{n+1}}=\frac17-\frac{2}{7^2}x+\frac{2^2}{7^3}x^2+\frac{2^3}{7^4}x^3+\cdots .$$For convergence, we need $\lvert\frac{2x}{7}\rvert<1$. This simplifies to $|x|<\frac72$. |