- ∫undudxdx=∫undu=un+1n+1+C as long as n≠−1
- ∫1ududxdx=∫duu=ln(|u|)+C (Don't forget the absolute value!)
- ∫eududxdx=∫eudu=eu+C
- ∫cos(u)dudxdx=∫cos(u)du=sin(u)+C
- ∫sin(u)dudxdx=∫sin(u)du=−cos(u)+C
- ∫sec2(u)dudxdx=∫sec2(u)du=tan(u)+C
- ∫sec(u)tan(u)dudxdx=∫sec(u)tan(u)du=sec(u)+C
- ∫csc2(u)dudxdx=∫csc2(u)du=−cot(u)+C
- ∫csc(u)cot(u)dudxdx=∫csc(u)cot(u)du=−csc(u)+C
- ∫11+u2dudxdx=∫du1+u2=tan−1(u)+C
- ∫1√1−u2dudxdx=∫du√1−u2=sin−1(u)+C
|