- ∫xndx=xn+1n+1+C, as long as n≠−1
- ∫dxx=ln|x|+C
(Don't forget the absolute value!)
- ∫exdx=ex+C
- ∫cos(x)dx=sin(x)+C
- ∫sin(x)dx=−cos(x)+C
- ∫sec2(x)dx=tan(x)+C
- ∫sec(x)tan(x)dx=sec(x)+C
- ∫csc2(x)dx=−cot(x)+C
- ∫csc(x)cot(x)dx=−csc(x)+C
- ∫dx1+x2=tan−1(x)+C
- ∫dx√1−x2=sin−1(x)+C
|