Substitution
The most basic trick for doing integrals is
u-substitution. The simplest uses involve taking u to be
the inside part of a composition of functions, and have du or a
multiple of du appearing in the integral as well. More
sophisticated uses involve clever choices of u. There is no single rule for how to pick u.
It takes practice to get a feel for it. With definite integrals, the limits of
integration must be changed, or the antiderivative
must be computed separately.
Standard example:
∫xsin(x2+3)dxu=x2+3du=2xdx12du=xdx=12∫sinudu=−12cosu+C=−12cos(x2+3)+C
Example of substitution on a definite integral, with two ways to
solve.
∫21dx(3x−5)2dxu=3x−5du=3xdx13du=xdxu(1)=3⋅1−5=−2u(2)=3⋅2−5=1=13∫1−2u−2du=−13u−1|1−2=−13(11−1−2)=−1332=−12
-----------------OR-------------------
∫21dx(3x−5)2dx
( First find the antiderivative: ∫dx(3x−5)2dxu=3x−5du=3xdx13du=xdx=13∫u−2du=−13u−1+C=−13(3x−5)+C)
∫21dx(3x−5)2dx=−13(3x−5)|21=−13(13⋅2−5−13⋅1−5)−13(11−1−2)=−1332=−12
Two examples with clever choices of u:
∫e√xdxu=√xdu=12√xdx2√xdu=dx2udu=dx=∫2euudu and
now use integration by parts, and rewrite in terms of x
----------------------------------------------------------------------------
∫x√x−1dxu=x−1du=dxx=(u+1)=∫(u+1)√udu=∫(u3/2+u1/2)du which you can integrate,
then rewrite in terms of x
|