Home The Fundamental Theorem of CalculusThree Different ConceptsThe Fundamental Theorem of Calculus (Part 2) The Fundamental Theorem of Calculus (Part 1) More FTC 1 The Indefinite Integral and the Net ChangeIndefinite Integrals and Anti-derivativesA Table of Common Anti-derivatives The Net Change Theorem The NCT and Public Policy SubstitutionSubstitution for Indefinite IntegralsExamples to Try Revised Table of Integrals Substitution for Definite Integrals Examples Area Between CurvesComputation Using IntegrationTo Compute a Bulk Quantity The Area Between Two Curves Horizontal Slicing Summary VolumesSlicing and Dicing SolidsSolids of Revolution 1: Disks Solids of Revolution 2: Washers More Practice Integration by PartsIntegration by PartsExamples Integration by Parts with a definite integral Going in Circles Tricks of the Trade Integrals of Trig FunctionsAntiderivatives of Basic Trigonometric FunctionsProduct of Sines and Cosines (mixed even and odd powers or only odd powers) Product of Sines and Cosines (only even powers) Product of Secants and Tangents Other Cases Trig SubstitutionsHow Trig Substitution WorksSummary of trig substitution options Examples Completing the Square Partial FractionsIntroductionLinear Factors Irreducible Quadratic Factors Improper Rational Functions and Long Division Summary Strategies of IntegrationSubstitutionIntegration by Parts Trig Integrals Trig Substitutions Partial Fractions Improper IntegralsType 1 - Improper Integrals with Infinite Intervals of IntegrationType 2 - Improper Integrals with Discontinuous Integrands Comparison Tests for Convergence Differential EquationsIntroductionSeparable Equations Mixing and Dilution Models of GrowthExponential Growth and DecayLogistic Growth Infinite SequencesApproximate Versus Exact AnswersExamples of Infinite Sequences Limit Laws for Sequences Theorems for and Examples of Computing Limits of Sequences Monotonic Covergence Infinite SeriesIntroductionGeometric Series Limit Laws for Series Test for Divergence and Other Theorems Telescoping Sums and the FTC Integral TestRoad MapThe Integral Test Estimates of Value of the Series Comparison TestsThe Basic Comparison TestThe Limit Comparison Test Convergence of Series with Negative TermsIntroduction, Alternating Series,and the AS TestAbsolute Convergence Rearrangements The Ratio and Root TestsThe Ratio TestThe Root Test Examples Strategies for testing SeriesStrategy to Test Series and a Review of TestsExamples, Part 1 Examples, Part 2 Power SeriesRadius and Interval of ConvergenceFinding the Interval of Convergence Power Series Centered at $x=a$ Representing Functions as Power SeriesFunctions as Power SeriesDerivatives and Integrals of Power Series Applications and Examples Taylor and Maclaurin SeriesThe Formula for Taylor SeriesTaylor Series for Common Functions Adding, Multiplying, and Dividing Power Series Miscellaneous Useful Facts Applications of Taylor PolynomialsTaylor PolynomialsWhen Functions Are Equal to Their Taylor Series When a Function Does Not Equal Its Taylor Series Other Uses of Taylor Polynomials Partial DerivativesVisualizing Functions in 3 DimensionsDefinitions and Examples An Example from DNA Geometry of Partial Derivatives Higher Order Derivatives Differentials and Taylor Expansions Multiple IntegralsBackgroundWhat is a Double Integral? Volumes as Double Integrals Iterated Integrals over RectanglesHow To Compute Iterated IntegralsExamples of Iterated Integrals Cavalieri's Principle Fubini's Theorem Summary and an Important Example Double Integrals over General RegionsType I and Type II regionsExamples 1-4 Examples 5-7 Order of Integration |
How To Compute Iterated IntegralsNow that we know what double integrals are, we can start to compute them. The key idea is to work with one variable at a time. In order to integrate over a rectangle $[a,b] \times [c,d]$, we first integrate with respect to one variable (say, $y$) for each fixed value of $x$. That's an ordinary integral, which we can compute using the fundamental theorem of calculus. We then integrate the result over the other variable (in this case $x$), which we can also compute using the fundamental theorem of calculus. So a 2-dimensional double integral becomes two ordinary 1-dimensional integrals, one inside the other. We call this an iterated integral. There are two ways to see the relation between double integrals
and iterated integrals. In the bottom-up approach, we
evaluate the sum $$\sum_{i=1}^m\sum_{j=1}^n
f\left(x_{i}^*,y_{j}\right)^* \,\Delta x\,\Delta y=\sum_{i=1}^m
\left(\sum_{j=1}^n f\left(x_{i}^*,y_{j}^*\right) \,\Delta
x\,\right) \Delta y,$$ by first summing over all of the boxes with
a fixed $i$ to get the contribution of a column (as indicated with
the parentheses on the second sum), and then adding up the
columns. (We could do this in the other order, by reversing
the summations.)
This approach is explained in the following video, and an example is worked out. (Video Fix? However, there is a small error. At the beginning it says that we're going to integrate over the rectangle $[0,1] \times [0,2]$, but for the rest of the video the region $R$ is actually the rectangle $[0,2] \times [0,1]$.) |