Theorem: If $\displaystyle{\sum_{n=1}^\infty a_n}$ and $\displaystyle{\sum_{n=1}^\infty b_n}$ are series with non-negative terms, then:
- If $\displaystyle{\sum_{n=1}^\infty b_n}$ converges and each $a_n \le b_n$, then $\displaystyle{\sum_{n=1}^\infty a_n}$ converges.
- If $\displaystyle{\sum_{n=1}^\infty b_n}$ diverges and each $a_n \ge b_n$, then $\displaystyle{\sum_{n=1}^\infty a_n}$ diverges.
|