Home

#### The Fundamental Theorem of Calculus

Three Different Quantities
The Whole as Sum of Partial Changes
The Indefinite Integral as Antiderivative
The FTC and the Chain Rule

#### The Indefinite Integral and the Net Change

Indefinite Integrals and Anti-derivatives
A Table of Common Anti-derivatives
The Net Change Theorem
The NCT and Public Policy

#### Substitution

Substitution for Indefinite Integrals
Revised Table of Integrals
Substitution for Definite Integrals

#### Area Between Curves

The Slice and Dice Principle
To Compute a Bulk Quantity
The Area Between Two Curves
Horizontal Slicing
Summary

#### Volumes

Slicing and Dicing Solids
Solids of Revolution 1: Disks
Solids of Revolution 2: Washers
Volumes Rotating About the $y$-axis

Behind IBP
Examples
Going in Circles

#### Integrals of Trig Functions

Basic Trig Functions
Product of Sines and Cosines (1)
Product of Sines and Cosines (2)
Product of Secants and Tangents
Other Cases

#### Trig Substitutions

How it works
Examples
Completing the Square

#### Partial Fractions

Introduction
Linear Factors
Improper Rational Functions and Long Division
Summary

#### Strategies of Integration

Substitution
Integration by Parts
Trig Integrals
Trig Substitutions
Partial Fractions

#### Improper Integrals

Type I Integrals
Type II Integrals
Comparison Tests for Convergence

#### Differential Equations

Introduction
Separable Equations
Mixing and Dilution

#### Models of Growth

Exponential Growth and Decay
Logistic Growth

#### Infinite Sequences

Close is Good Enough (revisited)
Examples
Limit Laws for Sequences
Monotonic Convergence

#### Infinite Series

Introduction
Geometric Series
Limit Laws for Series
Telescoping Sums and the FTC

#### Integral Test

The Integral Test
When the Integral Diverges
When the Integral Converges

#### Comparison Tests

The Basic Comparison Test
The Limit Comparison Test

#### Convergence of Series with Negative Terms

Introduction
Alternating Series and the AS Test
Absolute Convergence
Rearrangements

The Ratio Test
The Root Test
Examples

#### Strategies for testing Series

List of Major Convergence Tests
Examples

#### Power Series

Finding the Interval of Convergence
Other Power Series

#### Representing Functions as Power Series

Functions as Power Series
Derivatives and Integrals of Power Series
Applications and Examples

#### Taylor and Maclaurin Series

The Formula for Taylor Series
Taylor Series for Common Functions
Adding, Multiplying, and Dividing Power Series
Miscellaneous Useful Facts

#### Applications of Taylor Polynomials

What are Taylor Polynomials?
How Accurate are Taylor Polynomials?
What can go Wrong?
Other Uses of Taylor Polynomials

#### Partial Derivatives

Definitions and Rules
The Geometry of Partial Derivatives
Higher Order Derivatives
Differentials and Taylor Expansions

#### Multiple Integrals

Background
What is a Double Integral?
Volumes as Double Integrals

#### Iterated Integrals over Rectangles

One Variable at the Time
Fubini's Theorem
Notation and Order

#### Double Integrals over General Regions

Type I and Type II regions
Examples
Order of Integration
Area and Volume Revisited

### Functions as Power Series

A power series $$\sum_{n=0}^\infty a_n x^n$$ can be thought of as a function of $x$ that is defined inside the interval of convergence. Not all functions can be expressed as power series, but most common and useful functions can.

 Example: Since $$1+r+r^2+r^3+ \ldots = \frac{1}{1-r},$$ for $\lvert r\rvert<1$, replacing $r$ with $x$ gives us the first example of a function expressed as power series, namely $$\displaystyle{f(x)=\frac{1}{1-x} = \sum_{n=0}^\infty x^n = 1+x+x^2+\ldots}$$ as long as $\lvert x\rvert<1$. Similarly, replacing $r=-x$ gives us $$\displaystyle{\frac{1}{1+x} = \sum_{n=0}^\infty (-x)^n = 1-x+x^2+\ldots}$$ as long as $\lvert x\rvert<1$. and replacing $r=x^2$ yields $$\displaystyle{\frac{1}{1+x^2} = \sum_{n=0}^\infty (-x^2)^n = 1-x^2-x^4+x^6+\ldots}$$ as long as $|x^2|<1$. That is, as long as $\lvert x\rvert<1$.