$\displaystyle\frac{d}{dx}\bigl(\sin(x)\bigr)=\cos(x)$ | | $\displaystyle\int\sin(x)\,dx=- \cos(x) +C$ |
$\displaystyle\frac{d}{dx}\bigl(\cos(x)\bigr)=-\sin(x)$ | | $\displaystyle\int\cos(x)\,dx=\sin(x) +C$ |
$\displaystyle\frac{d}{dx}\bigl(\tan(x)\bigr)=\sec^2(x)$ | | $\displaystyle\int\tan(x)\,dx=-\ln\bigl\lvert\cos(x)\bigr\rvert+C = \ln\bigl\lvert\sec(x)\bigr\rvert+C $ |
$\displaystyle\frac{d}{dx}\bigl(\cot(x)\bigr)=-\csc^2(x)$ | | $\displaystyle\int\cot(x)\,dx=\ln\bigl\lvert\sin(x)\bigr\rvert+C = -\ln\bigl\lvert\csc(x)\bigr\rvert+C $ |
$\displaystyle\frac{d}{dx}\bigl(\sec(x)\bigr)=\sec(x)\tan(x)$ | | $\displaystyle\int\sec(x)\,dx=\ln\bigl\lvert\sec(x)+\tan(x)\bigr\rvert+C $ |
$\displaystyle\frac{d}{dx}\bigl(\csc(x)\bigr)=-\cot(x)\csc(x)$ | | $\displaystyle\int\csc(x)\,dx= -\ln\bigr\lvert\csc(x)+\cot(x)\bigr\rvert+C $ |