Home The Fundamental Theorem of CalculusThree Different QuantitiesThe Whole as Sum of Partial Changes The Indefinite Integral as Antiderivative The FTC and the Chain Rule The Indefinite Integral and the Net ChangeIndefinite Integrals and Anti-derivativesA Table of Common Anti-derivatives The Net Change Theorem The NCT and Public Policy SubstitutionSubstitution for Indefinite IntegralsRevised Table of Integrals Substitution for Definite Integrals Area Between CurvesThe Slice and Dice PrincipleTo Compute a Bulk Quantity The Area Between Two Curves Horizontal Slicing Summary VolumesSlicing and Dicing SolidsSolids of Revolution 1: Disks Solids of Revolution 2: Washers Volumes Rotating About the $y$-axis Integration by PartsBehind IBPExamples Going in Circles Tricks of the Trade Integrals of Trig FunctionsBasic Trig FunctionsProduct of Sines and Cosines (1) Product of Sines and Cosines (2) Product of Secants and Tangents Other Cases Trig SubstitutionsHow it worksExamples Completing the Square Partial FractionsIntroductionLinear Factors Quadratic Factors Improper Rational Functions and Long Division Summary Strategies of IntegrationSubstitutionIntegration by Parts Trig Integrals Trig Substitutions Partial Fractions Improper IntegralsType I IntegralsType II Integrals Comparison Tests for Convergence Differential EquationsIntroductionSeparable Equations Mixing and Dilution Models of GrowthExponential Growth and DecayLogistic Growth Infinite SequencesClose is Good Enough (revisited)Examples Limit Laws for Sequences Monotonic Convergence Infinite SeriesIntroductionGeometric Series Limit Laws for Series Telescoping Sums and the FTC Integral TestRoad MapThe Integral Test When the Integral Diverges When the Integral Converges Comparison TestsThe Basic Comparison TestThe Limit Comparison Test Convergence of Series with Negative TermsIntroductionAlternating Series and the AS Test Absolute Convergence Rearrangements The Ratio and Root TestsThe Ratio TestThe Root Test Examples Strategies for testing SeriesList of Major Convergence TestsExamples Power SeriesRadius and Interval of ConvergenceFinding the Interval of Convergence Other Power Series Representing Functions as Power SeriesFunctions as Power SeriesDerivatives and Integrals of Power Series Applications and Examples Taylor and Maclaurin SeriesThe Formula for Taylor SeriesTaylor Series for Common Functions Adding, Multiplying, and Dividing Power Series Miscellaneous Useful Facts Applications of Taylor PolynomialsWhat are Taylor Polynomials?How Accurate are Taylor Polynomials? What can go Wrong? Other Uses of Taylor Polynomials Partial DerivativesDefinitions and RulesThe Geometry of Partial Derivatives Higher Order Derivatives Differentials and Taylor Expansions Multiple IntegralsBackgroundWhat is a Double Integral? Volumes as Double Integrals Iterated Integrals over RectanglesOne Variable at the TimeFubini's Theorem Notation and Order Double Integrals over General RegionsType I and Type II regionsExamples Order of Integration Area and Volume Revisited |
Definitions and RulesPartial derivatives help us track the change of multi-variable functions by dealing with one variable at the time. DNA forms a double helix, but the curvature of this helix depends on the temperature and on the salinity (concentration of salt). If we wanted to understand the curvature, we would do experiments by varying the conditions and measuring the curvature each time. If we did our experiments well, we wouldn't try changing both the temperature and the salinity. We would first hold the salinity fixed and change the temperature. Once we understood how temperature affects curvature, we would run a second set of experiments, holding the temperature fixed and varying the salinity. Combining the results, we would understand how both temperature and salinity affect curvature. Mathematically, the curvature is a function $f(x,y)$, where $x$ is the temperature and $y$ is the salinity. Varying the temperature means comparing $f(x,y)$ to $f(x+h,y)$, and we can ask for the rate of change. Varying the salinity means comparing $f(x,y)$ to $f(x,y+h)$. By taking limits, we can compute two kinds of derivatives:
There are many notations for partial derivatives. If $z = f(x,y)$, then $$\displaystyle f_x(x,y) = f_x = \frac{\partial f}{\partial x}= \frac{\partial}{\partial x}f(x,y) = \frac{\partial z}{\partial x}= f_1 = D_1 f= D_x f$$ and $$\displaystyle f_y(x,y) = f_y = \frac{\partial f}{\partial y}= \frac{\partial}{\partial y}f(x,y) = \frac{\partial z}{\partial y}= f_2 = D_2 f= D_y f$$ The rough and precise definitions of limits of functions of two (or more) variables work the same way:
When computing $f_x$, we treat $y$ as a constant because it is a constant. After all, we are doing today's experiments at fixed salinity. This means that we can apply all of our familiar differentiation rules, pretending that the only variable is $x$.
|