Example:
Compute ${\displaystyle\frac{d}{dx}
\int_1^{x^2} \tan^{-1}(s)\, ds.}$
Solution:
Let $F(x)$ be the anti-derivative of $\tan^{-1}(x)$. Finding a
formula for $F(x)$ is hard, but we don't actually need the formula!
$$\int_1^{x^2} \tan^{-1}(s) \,ds = F\left(x^2\right) - F(1),$$
so
$$\frac{d}{dx} \int_1^{x^2} \tan^{-1}(s)\,ds = 2x F'\left(x^2\right) = 2x f\left(x^2\right) =
2x \tan^{-1}\left(x^2\right).$$ |