Home

#### The Fundamental Theorem of Calculus

Three Different Quantities
The Whole as Sum of Partial Changes
The Indefinite Integral as Antiderivative
The FTC and the Chain Rule

#### The Indefinite Integral and the Net Change

Indefinite Integrals and Anti-derivatives
A Table of Common Anti-derivatives
The Net Change Theorem
The NCT and Public Policy

#### Substitution

Substitution for Indefinite Integrals
Revised Table of Integrals
Substitution for Definite Integrals

#### Area Between Curves

The Slice and Dice Principle
To Compute a Bulk Quantity
The Area Between Two Curves
Horizontal Slicing
Summary

#### Volumes

Slicing and Dicing Solids
Solids of Revolution 1: Disks
Solids of Revolution 2: Washers
Volumes Rotating About the $y$-axis

#### Integration by Parts

Behind IBP
Examples
Going in Circles
Tricks of the Trade

#### Integrals of Trig Functions

Basic Trig Functions
Product of Sines and Cosines (1)
Product of Sines and Cosines (2)
Product of Secants and Tangents
Other Cases

#### Trig Substitutions

How it works
Examples
Completing the Square

#### Partial Fractions

Introduction
Linear Factors
Improper Rational Functions and Long Division
Summary

#### Strategies of Integration

Substitution
Integration by Parts
Trig Integrals
Trig Substitutions
Partial Fractions

#### Improper Integrals

Type I Integrals
Type II Integrals
Comparison Tests for Convergence

#### Differential Equations

Introduction
Separable Equations
Mixing and Dilution

#### Models of Growth

Exponential Growth and Decay
Logistic Growth

#### Infinite Sequences

Close is Good Enough (revisited)
Examples
Limit Laws for Sequences
Monotonic Convergence

#### Infinite Series

Introduction
Geometric Series
Limit Laws for Series
Telescoping Sums and the FTC

#### Integral Test

The Integral Test
When the Integral Diverges
When the Integral Converges

#### Comparison Tests

The Basic Comparison Test
The Limit Comparison Test

#### Convergence of Series with Negative Terms

Introduction
Alternating Series and the AS Test
Absolute Convergence
Rearrangements

The Ratio Test
The Root Test
Examples

#### Strategies for testing Series

List of Major Convergence Tests
Examples

#### Power Series

Radius and Interval of Convergence
Finding the Interval of Convergence
Other Power Series

#### Representing Functions as Power Series

Functions as Power Series
Derivatives and Integrals of Power Series
Applications and Examples

#### Taylor and Maclaurin Series

The Formula for Taylor Series
Taylor Series for Common Functions
Adding, Multiplying, and Dividing Power Series
Miscellaneous Useful Facts

#### Applications of Taylor Polynomials

What are Taylor Polynomials?
How Accurate are Taylor Polynomials?
What can go Wrong?
Other Uses of Taylor Polynomials

#### Partial Derivatives

Definitions and Rules
The Geometry of Partial Derivatives
Higher Order Derivatives
Differentials and Taylor Expansions

#### Multiple Integrals

Background
What is a Double Integral?
Volumes as Double Integrals

#### Iterated Integrals over Rectangles

One Variable at the Time
Fubini's Theorem
Notation and Order

#### Double Integrals over General Regions

Type I and Type II regions
Examples
Order of Integration
Area and Volume Revisited

 For every quadratic factor $x^2 + bx + c$, we have $$\displaystyle\frac{Ax+B}{x^2+bx+c}.$$ For every repeated quadratic factor $(x^2+bx+c)^n$, we have $$\displaystyle\frac{A_1 x + B_1}{x^2+bx+c} + \frac{A_2x+B_2}{(x^2+bx+c)^2}+\ldots + \frac{A_nx+B_n}{(x^2+bx+c)^n}.$$

 Example: We have the decomposition $$\displaystyle{ 2x^3+5x-1 \over (x+1)^3(x^2+1)^2 } = \displaystyle{ { A \over x+1 } + { B \over (x+1)^2 }+ { C \over (x+1)^3 } + { Dx+E \over x^2+1 } + { Fx+G \over (x^2+1)^2 } }.$$

Finding the coefficients $A$, $B$, etc. is also harder. After cross-multiplying, we can't just plug in the roots of $Q(x)$ to get the coefficients one at a time, since the quadratic factors don't have real roots. We either have to plug in lots of different values of $x$, or compare the corresponding coefficients of $1$, $x$, $x^2$, etc. Either way, we get a system of linear equations to solve.

Finally, solving the integrals at the end is harder than with linear factors.

• To integrate $$\displaystyle\int \frac{x}{(x^2+a^2)^n}\,dx,$$ we can substitute $u=x^2+a^2$.

• To integrate $$\displaystyle\int \frac{dx}{(x^2+a^2)^n},$$ on the other hand, we can substitute $x=a\tan(\theta)$.

These complications, and how to overcome them, are explained in the following video.