Home

#### The Fundamental Theorem of Calculus

Three Different Quantities
The Whole as Sum of Partial Changes
The Indefinite Integral as Antiderivative
The FTC and the Chain Rule

#### The Indefinite Integral and the Net Change

Indefinite Integrals and Anti-derivatives
A Table of Common Anti-derivatives
The Net Change Theorem
The NCT and Public Policy

#### Substitution

Substitution for Indefinite Integrals
Revised Table of Integrals
Substitution for Definite Integrals

#### Area Between Curves

The Slice and Dice Principle
To Compute a Bulk Quantity
The Area Between Two Curves
Horizontal Slicing
Summary

#### Volumes

Slicing and Dicing Solids
Solids of Revolution 1: Disks
Solids of Revolution 2: Washers
Volumes Rotating About the $y$-axis

Behind IBP
Examples
Going in Circles

#### Integrals of Trig Functions

Basic Trig Functions
Product of Sines and Cosines (1)
Product of Sines and Cosines (2)
Product of Secants and Tangents
Other Cases

#### Trig Substitutions

How it works
Examples
Completing the Square

#### Partial Fractions

Introduction
Linear Factors
Improper Rational Functions and Long Division
Summary

#### Strategies of Integration

Substitution
Integration by Parts
Trig Integrals
Trig Substitutions
Partial Fractions

#### Improper Integrals

Type I Integrals
Type II Integrals
Comparison Tests for Convergence

#### Differential Equations

Introduction
Separable Equations
Mixing and Dilution

#### Models of Growth

Exponential Growth and Decay
Logistic Growth

#### Infinite Sequences

Close is Good Enough (revisited)
Examples
Limit Laws for Sequences
Monotonic Convergence

#### Infinite Series

Introduction
Geometric Series
Limit Laws for Series
Telescoping Sums and the FTC

#### Integral Test

The Integral Test
When the Integral Diverges
When the Integral Converges

#### Comparison Tests

The Basic Comparison Test
The Limit Comparison Test

#### Convergence of Series with Negative Terms

Introduction
Alternating Series and the AS Test
Absolute Convergence
Rearrangements

The Ratio Test
The Root Test
Examples

#### Strategies for testing Series

List of Major Convergence Tests
Examples

#### Power Series

Finding the Interval of Convergence
Other Power Series

#### Representing Functions as Power Series

Functions as Power Series
Derivatives and Integrals of Power Series
Applications and Examples

#### Taylor and Maclaurin Series

The Formula for Taylor Series
Taylor Series for Common Functions
Adding, Multiplying, and Dividing Power Series
Miscellaneous Useful Facts

#### Applications of Taylor Polynomials

What are Taylor Polynomials?
How Accurate are Taylor Polynomials?
What can go Wrong?
Other Uses of Taylor Polynomials

#### Partial Derivatives

Definitions and Rules
The Geometry of Partial Derivatives
Higher Order Derivatives
Differentials and Taylor Expansions

#### Multiple Integrals

Background
What is a Double Integral?
Volumes as Double Integrals

#### Iterated Integrals over Rectangles

One Variable at the Time
Fubini's Theorem
Notation and Order

#### Double Integrals over General Regions

Type I and Type II regions
Examples
Order of Integration
Area and Volume Revisited

### Intro

Partial fractions is a technique for turning proper rational functions $\displaystyle\frac{P(x)}{Q(x)}$ into sums of simpler rational functions that can be more easily integrated.

 Example: Since $$\displaystyle\frac{3x+4}{x^2+3x+2}=\displaystyle\frac{1}{x+1}+\displaystyle\frac{2}{x+2},$$ we have $$\int \frac{3x+4}{x^2+3x+2}\,dx = \int \left( \frac{1}{x+1} + \frac{2}{x+2}\right )\,dx = \ln\lvert x+1\rvert + 2\ln\lvert x+2\rvert+C.$$

There are four cases, depending on what happens when we factor $Q(x)$:

 Distinct Linear Factors: The simplest case is where all the roots of $Q(x)$ are real and all are different, so that $Q(x)$ factors as a product of distinct linear factors. E.g., $Q(x)=x(x-1)(x+2)(x+7)$. Repeated Linear Factors: The next simplest case is where are the factors are linear, but some are repeated, such as in $Q(x)=x(x-1)^2(x+2)^3$. Non-repeated quadratic factors: When $Q(x)$ has complex roots, then we get irreducible quadratic factors. Case 3 is where these are all distinct such as in $Q(x)=x(x-1)(x^2+4)$. Repeated quadratic factors: The hardest case is where there are repeated quadratic factors, such as in $Q(x)=x(x-1)(x^2+4)^2$.