 $\int x^n \hspace{.05in}dx = \displaystyle \frac{x^{n+1}}{n+1} + C$, as long as $n \ne 1$
 $\displaystyle \int \frac{dx}{x} = \ln(x) + C$ (Don't forget the absolute value!)
 $\int e^x \hspace{.05in} dx = e^x + C$
 $\int \cos(x) \hspace{.05in} dx = \sin(x) + C$
 $\int \sin(x) \hspace{.05in} dx =  \cos(x) + C$
 $\int \sec^2(x) \hspace{.05in} dx = \tan(x) + C$
 $\int \sec(x) \tan(x) \hspace{.05in} dx = \sec(x) + C$
 $\int \csc^2(x) \hspace{.05in} dx =  \cot(x) + C$
 $\int \csc(x)\cot(x) \hspace{.05in} dx = \csc(x) + C$
 $\displaystyle \int \frac{dx}{1+x^2} = \tan^{1}(x) + C$
 $\displaystyle\int \frac{dx}{\sqrt{1x^2}} = \sin^{1}(x) + C$
