Publications of Alexis VASSEUR
Submitted preprints:
[109] Moon-Jin Kang, Alexis F. Vasseur, Yi Wang, Time-asymptotic stability of composite waves of viscous shock and rarefaction for barotropic Navier-Stokes equations.
[Arxiv]
Preprint.
[108] François Golse, Cyril Imbert, Alexis F. Vasseur, Partial regularity for the space homogeneous Landau equation with very soft potentials.
[Arxiv]
Preprint.
[107] Alexis F. Vasseur and Jincheng Yang, Boundary Vorticity Estimates for Navier-Stokes and Application to the Inviscid Limit. [Arxiv]
Preprint.
[106] W. Golding, S. Krupa, A. Vasseur, Sharp a-contraction estimates for small extremal shocks. [Arxiv]
submitted.
Published and Accepted Articles in refereed Journals:
[103] Geng Chen, Sam G. Krupa, and Alexis F. Vasseur, Uniqueness and weak-BV stability for 2×2 conservation laws, [pdf]
to appear in ARMA.
[96] M.-J. Kang, A. Vasseur, Uniqueness and stability of entropy shocks to the isentropic Euler system in a class of inviscid limits from a large family of Navier-Stokes systems, [pdf]
Invent. Math. 224 (2021), no. 1, 55--146.
[83] C. Caputo, Th. Goudon, A. Vasseur, Solutions of the 4-species quadratic reaction-diffusion system are bounded and $C^\infty$-smooth, in any space dimension, [pdf]
Anal. PDE 12 (2019), no. 7, 1773--1804.
[64] A. Vasseur,
Relative entropy and contraction for extremal shocks of Conservation Laws up to a shift [pdf]
Recent advances in partial differential equations and applications, 385--404, Contemp. Math., 666, Amer. Math. Soc., Providence, RI, 2016.
[55] K. Choi, A. Vasseur, Estimates on fractional higher derivatives of weak solutions for the Navier-Stokes equations [pdf]
Annales de l'institut Henri Poincare (C) Non Linear Analysis, 31 (2014), 899 - 945.
[54] E. Baer, A. Vasseur, A Bound from Below on the Temperature for the Navier-Stokes-Fourier System. [pdf]
SIAM J. Math. Anal. 45 (2013), no. 4, 2046-2063.
[53] A. Vasseur, A rigorous derivation of the coupling of a kinetic equation and Burgers' equation. [pdf]
Arch. Ration. Mech. Anal. 206 (2012), no. 1, 1-30.
[52] B. Perthame, A. Vasseur, Regularization in Keller-Segel type systems and the De Giorgi method. [pdf]
Commun. Math. Sci. 10 (2012), no. 2, 463-476.
[51] L. Caffarelli, Ch.-H. Chan, A. Vasseur, Regularity theory for nonlinear integral operators.
[pdf]
J. Amer. Math. Soc. 24 (2011), no. 3, 849--869.
[51] L. Caffarelli, F. Golse, Y. Guo, C. Kenig, A. Vasseur,
Nonlinear partial differential equations. Selected lecture notes from the School "Topics in PDE's and Applications 2008."
Advanced Courses in Mathematics. CRM Barcelona. Birkhäuser/Springer Basel AG, Basel, 2012. viii+149 pp.
[49] L. Caffarelli, A. Vasseur, The De Giorgi method for nonlocal fluid dynamics. Nonlinear partial differential equations,
1--38, Adv. Courses Math. CRM Barcelona, Birkhäuser/Springer Basel AG, Basel, 2012.
[48] Nicholas Leger, A. Vasseur, Relative entropy and the stability of shocks and contact discontinuities for systems of conservation laws with non BV perturbations. [pdf]
Arch. Ration. Mech. Anal. 201 (2011), no. 1, 271--302.
[47] C. Bjorland, A. Vasseur, Weak in Space, Log in Time Improvement of the Ladyzenskaja-Prodi-Serrin Criteria. [pdf],
J. Math. Fluid Mech. 13 (2011), no. 2, 259-269.
[46] B. Ducomet, S. Necasova, A. Vasseur, "On spherically symmetric motions of a viscous compressible
barotropic and self-graviting gas" [pdf],
J. Math. Fluid Mech. 13 (2011), no. 2, 191?211.
[45] E. Feireisl, A. Vasseur, New perspectives in fluid dynamics:
Mathematical analysis of a model proposed by
Howard Brenner. [pdf],
New directions in mathematical fluid mechanics, 153 --179, Adv. Math. Fluid Mech., Birkhauser Verlag, Basel, 2010.
[44] B. Ducomet, and S. Necasova, A. Vasseur, On global motions of a compressible barotropic and selfgravitating gas with density-dependent viscosities. [ pdf]
Z. Angew. Math. Phys. 61 (2010), no. 3, 479--491.
[43] L. Caffarelli, A. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation. [pdf],
Annals of Math., Vol. 171 (2010), No. 3, 1903-1930.
[42] A. Vasseur, Higher derivatives estimate for the 3D Navier-Stokes equation. [pdf],
Annales de l'institut Henri Poincare (C) Non Linear Analysis, 27(5) (2010), 1189-1204.
[41] L. Caffarelli, A. Vasseur, The De Giorgi method for regularity of solutions of elliptic equations and its applications to fluid dynamics.
Discrete and Continuous Dynamical Systems - Series S (DCDS-S), 3 (3) (2010), 409 - 427.
[40] Th. Goudon, A.Vasseur, Regularity analysis for systems of reaction-diffusion equations. [pdf],
Ann. Sci. Ec. Norm. Super. (4) 43 (2010), no. 1, 117--14.
[39] M. Bostan, M. Gamba, Th. Goudon, A. Vasseur, Boundary value problems for the stationary Vlasov-Boltzmann-Poisson equation. [pdf],
Indiana Univ. Math. J. 59 (2010), no. 5, 1629?1660.
[38] J. Evans, C. Michoski, P. Schmitz, A. Vasseur, "A discontinuous Galerkin method for viscous compressible multifluids."
J. Comput. Phys. 229 (2010), no. 6, 2249--2266.
[37] C.Caputo, A. Vasseur, Global regularity of solutions to systems of reaction-diffusion wity sub-quadratic growth in any dimension. [pdf],
Comm. Partial Differential Equations 34 (2009), no. 10-12, 1228--1250.
[36] J. Evans, C. Michoski, P. Schmitz, A. Vasseur, "Quantum Hydrodynamics with
Trajectories: The Nonlinear Conservation Form Mixed/Discontinuous Galerkin
Method with Applications in Chemistry" [pdf],
J. Comput. Phys. 228 (2009), no. 23, 8589--8608.
[35] I. Gamba, A. Jungel, A. Vasseur, Global existence of solutions to one-dimensional viscous quantum hydrodynamic equations. [pdf]
J. Differential Equations 247 (2009), no. 11, 3117--3135.
[34] F.Berthelin, A.E.Tzavaras, A. Vasseur, From discrete velocity Boltzmann equations to gas dynamics before shocks. [pdf],
J. Stat. Phys. 135 (2009), no. 1, 153--173.
[33] A. Mellet, A. Vasseur, L^p estimates for quantities advected by a compressible flow. [pdf],
J. Math. Anal. Appl. 355 (2009), no. 2, 548--563.
[32] N.Leger, A. Vasseur, Study of a generalized fragmentation model for sprays. [pdf],
J. Hyperbolic Differ. Equ. 6 (2009), no. 1, 185--206.
[31] C.Michoski, A. Vasseur, Existence and Uniqueness of strong solutions for a compressible multiphase Navier-Stokes Miscible Fluid-Flow Problem in dimension 1. [pdf]
Math. Models Methods Appl. Sci. 19 (2009), no. 3, 443--476.
[30] A. Vasseur, Regularity criterion for 3D Navier-Stokes equations in terms of the direction of the velocity. [pdf]
Appl. Math. 54 (2009), no. 1, 47--52.
[29] A. Mellet, A. Vasseur, A bound from below for the temperature in compressible Navier-Stokes equations. [pdf]
Monatsh. Math. 157 (2009), no. 2, 143--161.
[28] A. Mellet, A. Vasseur, Asymptotic analysis for a Vlasov-Fokker-Planck/Compressible Navier-Stokes system of equations. [pdf]
Comm. Math. Phys. 281 (2008), no. 3, 573--596.
[27] A. Vasseur, Recent results on hydrodynamic limits.
Handbook of differential equations: evolutionary equations. Vol. IV, 323--376, Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam, 2008.
[26] A. Mellet and A. Vasseur, Existence and Uniqueness of global strong solutions for one-dimensional compressible Navier-Stokes equations. [pdf]
SIAM J. Math. Anal. 39 (2007/08), no. 4, 1344--1365.
[25] Ch.-H. Chan, A. Vasseur, Log improvement of the Prodi-Serrin criteria for Navier-Stokes equations. [pdf]
Methods Appl. Anal. 14 (2007), no. 2, 197--212.
[24] A. Mellet and A. Vasseur, Global weak solutions for a Vlasov-Fokker-Planck/Navier-Stokes system of equations. [pdf]
Math. Models Methods Appl. Sci. 17 (2007), no. 7, 1039--1063.
[23] A. Mellet and A. Vasseur, On the barotropic compressible Navier-Stokes equations. [pdf]
Comm. Partial Differential Equations 32 (2007), no. 1-3, 431--452.
[22] Y.-S. Kwon and A. Vasseur, Strong traces for solutions to scalar conservation laws with general flux. [pdf]
Arch. Ration. Mech. Anal. 185 (2007), no. 3, 495--513.
[21] A. Vasseur, A new proof of partial regularity of solutions to Navier-Stokes equations. [pdf]
NoDEA Nonlinear Differential Equations Appl. 14 (2007), no. 5-6, 753--785.
[20] A. Mellet and A. Vasseur, Homogenization of a nonlinear transport equation, [pdf]
Asymptot. Anal. 51 (2007), no. 2, 157--166.
[19] F. Berthelin and A. Vasseur, From kinetic equations to
multidimensional isentropic dynamics before shocks. [pdf]
SIMA Vol. 36 Number 6, pp. 180-183. 2005.
[18] Th. Goudon, P.-E. Jabin and A. Vasseur, Hydrodynamic limit for the Vlasov-Navier-Stokes
equations. Parts I: Light particles regime.
Indiana Univ. Math. J. 53 No. 6 (2004), 1495--1516.
[17] Th. Goudon, P.-E. Jabin and A. Vasseur, Hydrodynamic limit for the Vlasov-Navier-Stokes
equations. Parts II: fine particles regime.
Indiana Univ. Math. J. 53 No. 6 (2004), 1517--1536.
[16] G. Loeper, and A.Vasseur, Electric turbulence in a plasma subject to a strong magnetic field. [pdf]
Asymptotic Analysis, Vol. 40, Number 1/2004 pages 51-65.
[15] F.Poupaud and A.Vasseur,
Classical and quantum transport in random media. [pdf]
J. Math. pures Appl.(9) 82 (2003), no. 6, 711--748.
[14] R.Botchorishvili, B.Perthame
and A.Vasseur,
Equilibrium schemes for scalar conservation laws with stiff sources. [pdf]
Math. of Comp. 72 (2003), no.241, 131--157.
[13] T. Horsin, S. Mischler and A. Vasseur,
On the convergence of numerical schemes for the Boltzmann equation. [pdf]
Ann. Inst. H. Poincare, Anal.
Non Lin\'eaire 20 (2003), no.5, 731--758.
[12] A.Vasseur,
Well-posedness of scalar conservation laws with singular sources. [pdf]
Methods Appl. Anal. 9 (2002), no.2, 291--312.
[11] J.-F. Collet, T. Goudon, F. Poupaud and A.
Vasseur,
The Becker-Doring system and its Lifshitz-Slyozov limit. [pdf]
SIAM Journal of Applied Math., 2002, vol 62, 5, p. 1488--1500.
[10] J.-F. Collet, T. Goudon and
A. Vasseur, Some remarks on large-time
asymptotic of the Lifshitz-Slyozov equations.
J. Stat. Phys., 2002, vol. 108, no 1-2, 341--359.
[9] A. Vasseur, Strong traces for solutions to multidimensional scalar conservation laws. [pdf]
Archive for Rational Mechanics and Analysis, 160 (2001), no. 3,
181--193.
[8] A. Vasseur,
Existence and properties of semi-discrete shock profiles for the
isentropic
gas dynamic system with $\gamma=3$. [pdf]
SIAM J. Numer. Anal. 38 (2001), no. 6, 1886--1901 (electronic).
[7] A.Vasseur, Convergence of a semi-discrete
kinetic scheme for the isentropic gas dynamic
system with $\gamma=3$.
Indiana University Mathematics Journal 48 (1999), no. 1, 347--364.
[6] A. Vasseur,
Time regularity for the system of isentropic gas dynamics with $\gamma=3$.
Communications in Partial Differential Equations (1999) 11-12,
1987--1997.
[5] A. Vasseur, Kinetic
semidiscretization of scalar conservation laws and convergence by
using averaging lemmas. [pdf]
SIAM J. Numer. Anal. 36 (1999), no. 2, 465--474 (electronic).
Published articles in non refereed Journal:
[4] J.-F. Collet, T. Goudon, S. Hariz, F. Poupaud, A. Vasseur. Some recent
results on the kinetic theory of phase transitions.
Transport in transition regimes (Minneapolis,MN,2000), 103--120, IMA Vol. Math. Appl., 135, Springer, New York, 2004.
[3] A.Vasseur, Interface cinetique/fluide: un modele siplifie. (French)
[kinetic/fluid interface: a simplified model]
Seminaire: Equations aux Derivees Partielles 2002--2003, Exp. No. III, 15pp., Ecole Poytech., Palaiseau, 2003.
[2] Th. Goudon, P.-E. Jabin, A. Vasseur, Limites hydrodynamiques pour les
equations de Vlasov-Stokes.
(French)
[Hydrodynamic limits for the Vlasov-Stokes equations]
Journees Equations aux Derivees partielles (Forges-les-eaux, 2002) Exp.No.VII, 15pp.,Univ.Nantes, 2002.
[1] D. Besnard, F. Ducros, Ph. Loreaux, S. Mimouni and
A. Vasseur,
Turbulent mixing modeling and simulation.
Proceedings of the Fifth International Workshop on Compressible
Turbulent Mixing (Stony Brook, NY, 1995), 294--302.
Last modification : 10/14/2021.